Identificación y cuantificación de antocianinas en uvas muscadinas por cromatografía líquida y espectrometría de masas
##plugins.themes.bootstrap3.article.main##
Se analizó el contenido de antocianinas totales y el perfil de antocianinas individuales presentes en 10 cultivares de uvas muscadinas (5 de piel púrpura y 5 de piel bronce), cultivadas en el sur del estado de Georgia (Estados Unidos). Para efectos del análisis, las frutas fueron separadas en sus partes: piel, semilla y pulpa. El contenido de antocianinas totales fue determinado mediante un método de diferencial de pH y varió de 31 a 75 mg/100g de fruta fresca en las uvas púrpuras y de 0.4 a 1.3 en las uvas de color bronce. Las antocianinas individuales fueron analizadas mediante HPLC y su identidad confirmada mediante técnicas de HPLC-MS. La Delfinidina-3,5-diglucósido fue la antocianina más abundante (cerca del 46% del contenido total de antocianinas) y fue encontrada en las pieles de todas las frutas, en las semillas de 9 de los cultivares, y en las pulpas de 3. Petunidina-3,5-diglucósido (~23%) y malvidina-3,5-diglucósido ( ~20%) fueron las siguientes en concentración, pero solo fueron encontradas en las pieles de 8 y las semillas de 5 de los cultivares estudiados. Cianidina-3,5-diglucósido (~6%), peonidina-3,5-diglucósido (~3%) y petunidina-3monoglucósido (~1%) fueron también detectadas en las pieles de las frutas de piel púrpura. En este artículo se reporta por primera vez la presencia de petunidina-3-monoglucósido en uvas muscadinas. El contenido de antocianinas y la suma de antocianinas individuales presentaron una correlación alta (R = 0.98). El promedio del contenido de antocianinas totales reportado en este artículo fue mas bajo que los publicados para uvas de tipo europeo y otras uvas americanas de piel roja y de otras frutas comunes. Sin embargo, las uvas muscadinas de piel púrpura presentaron niveles de antocianinas que pueden ser consideradas de importancia nutracéutica.
AbstractTotal anthocyanin content and individual anthocyanin profile of ten cultivars (5 purple skin and 5 bronze skin) of muscadine grapes, grown in South Georgia, were assessed. Fruits were separated into skins, seeds and pulps for analysis. Total anthocyanin content was determined by a pH differential method and it varied from 31 to 75 mg/100g FW in the purple grapes and from 0.4 to 1.3 in the bronze grapes. Individual anthocyanins were analyzed by HPLC and their identity confirmed by HPLC-MS. Delphinidin-3,5-diglucoside was the most abundant (about 46% of the total anthocyanin content) and was found in the skins of all fruits, the seeds of 9 cultivars, and the pulps of 3. Petunidin-3,5-diglucoside ( ~23%) and malvidin-3,5-diglucoside (~20%) were the next in concentration but only found in the skins of 8 and in 5 seeds of the cultivars, respectively. Cyanidin-3,5-diglucoside (~6%), peonidin-3,5-diglucoside (~3%) and petunidin-3monoglucoside (~1%) were also found in the skins of the purple grapes. This is the first report of petunidin-3monoglucoside in muscadine grapes. The total anthocyanin content and the sum of the individual anthocyanins had a high correlation (R = 0.98). The average anthocyanin content of muscadine grapes was lower than published values for red European or other American red grapes, and other common berries. However, the purple muscadine grapes have anthocyanins levels that may be considered important from the nutraceutical point of view.
Descargas
##plugins.themes.bootstrap3.article.details##
Aruoma, O. I, and S. L. Cuppett. 1997. Antioxidant methodology: in vivo and in vitro concepts. Champaign Illinois: AOCS Press.
Chandra, J. P., J. Rana, and Y. Q. Li. 2001. Separation, identification, quantification, and method validation of anthocyanins in botanical supplement raw materials by HPLC and HPLC-MS. J. Agric. Food Chem. 49: 3515-21.
Clifford, M.N. 2000. Anthocyanins-nature, ocurrence and dietary burden. J. Sci. Food Agric. 80: 1063-72.
Da Costa, C. T., B. C. Nelson, S. A. Margolis, and D. Horton. 1998. Separation of blackcurrant anthocyanins by capillary zone electrophoresis. J.Chromatogr. 799: 321-27.
Darias-Martin, J., M. Carrillo, E. Díaz, and R. B. Boulton. 2001. Enhancement of red wine colour by pre-fermentation addition of copigments. Food Chem. 73: 217-220.
Espin, J. C., C. Soler-Rivas, H. J. Wichers, and C. Garcia-Viguera. 2000. Anthocyanin-based natural colorants: a new source of antiradical activity for foodstuff. J.Agric.Food Chem. 48: 1588-92.
Frankel, E. N. K., J., and J. E. Kinsella. 1993. Inhibition in vitro of oxidation of human low density lipoproteins by phenolic substances in wine. Lancet: 454-457.
Giusti, M. M.; Wrolstad, R. E. 2001. Characterization and measurement of anthocyanins by UV-visible spectroscopy. In Current Protocols in Food Analytical Chemistry, F1.2.1-F1.2.13. New York: John Wiley & Sons.
Goiffon, J. P., Brun M., and Bourrier M. J. 1991. High- performance liquid-chromatografy of red fruit anthocyanins. J. Chromatogr. 537: 101-121.
Goiffon, J. P., P. P. Mouly, and E. M. Gaydou. 1999. Anthocyanic pigment determination in red fruit juices, concentrated juicies and syrups using liquid chromatography. Anal.Chim Acta. 382: 39-50.
Goldy, R. G., E. P. Maness, H. D. Stiles, J. R. Clark, and M.A. Wilson. 1989. Pigment quantity and quality characteristics of some native Vitis rotundifolia Michx. Am.J.Enol.Vitic. 40: 253-58.
Kamei, H, et al. 1995. Suppression of tumor-cell growth by anthocyanins in-vitro. Cancer Invest. 13: 590-94.
Lauro, G.J., and F.J. Francis. 2000. Natural food colorants:science and technology. New York: Marcel Dekker.
Mazza, G, and E. Miniati. 1993. Anthocyanins in fruits, vegetables, and grains. Boca Raton: CRC Press.
Mazza, G., L. Fukumoto, P. Delaquis, B. Girard, and B. Ewert. 1999. Anthocyanins,phenolics,and color of Cabertnet Franc, Merlot, And Pinot Noir wines form British Columbia. J.Agric.Food Chem. 47: 4009-17.
Meiers, S., M. Kemeny, U. Weyand, R. Gastpar, E. Von Angerer, and D. Marko. 2001. The anthocyanidins cyanidin and delphinidin are potent inhibitors of the epidermal growth-factor receptor. J.Agric.Food Chem. 49: 958-62.
Narayan, M. S., K. A. Naidu, G. A. Ravishankar, L Srinivas, and L. V. Venkataraman. 1999. Antioxidant effect of anthocyanin on enzymatic and non-enzymatic lipid peroxidation. In Prostaglandins Leukotrienes and Essential Fatty Acids 50: 1-4.
Satue-Gracia, M. T., M. Heinonen, and E. N. Frankel. 1997. Anthocyanins as antioxidants on human low-density lipoprotein and lecithin-liposome systems. J. Agric. Food Chem. 45: 3362-67.
Sellappan, S., C. C. Akoh, and G. Krewer. 2002. Phenolic compounds and antioxidant capacity of Georgia-Grown blueberries and blackberries. J.Agric. Food Chem. 50: 2432-38.
Talcott, S. T., and J. H. Lee. 2002. Ellagic acid and flavonoid antioxidant content of muscadine wine and juice. J.Agric.Food Chem. 50: 3186-92.
Torre, L. C. B., B. H. 1977. Quantitative evaluation of Rubus fruit anthocyanin pigments. J.Food Sci. 42: 488.
Tsuda, T, F. Horio, J. Kitoh, and T. Osawa. 2002. Protective effects of dietary cyanidin 3-0-beta-D-glucoside on liverischemia-reperfusion injury in rats. Arch.Biochem.Biophys. 368: 361-66.
Wang, H., et al. 1999. Antioxidant and anti-inflammatory activities of anthocyanins and their aglycon, cyanidin, from tart cherries. J.Nat.Prod. 62: 294-96.