Procesos de dispersión a partir de modelos de reacción advectiva no lineal
##plugins.themes.bootstrap3.article.main##
Descargas
##plugins.themes.bootstrap3.article.details##
Grindrod, Peter. Patterns and Waves: The Theory and Aplications of Reaction - Diffusion Equations. Oxford: OUP, 1995.
Grindrod, Peter, and Michael Impey. “Channeling and Fickian Dispersion in Fractals Simulated Porous Media”. Water Resources Research Vol: 29 No. 12 (1993): 4077-4089.
Grindrod, Peter. “On Models of Dispersion at Macroscopic Scales”. Bath Institute for Complex Systems preprint 15/06 (2006), http://www.bath.ac.uk/math-sci/bics/ preprints/BICS06_15.pdf .
Hellen, Thomas, and Hans G. Othmer. “The Diffusion Limit of Transport Equation Derive from Velocity-Jump Processes”. SIAM J. APPL. MATH. Vol: 61 No 3 (2000): 751-775.
Hadeler, Peter, and Johannes Muller. “Dyna- mical Systems and Population Dynamics”. Ergodic Theory Analysis and Efficient Simulation of Dynamical Systems, editado por Bernold Fiedler. Berlin: Springer, 2001.
Madzvamuse, Anotida. “A Modified Backward Euler Scheme for Advection-Reaction- Diffusion Systems”. Mathematical Modeling of Biological Systems Volume I, Andreas Deutsch, Lutz Brusch, Helen Byrne, Gerda de Vries and Hanspeter Herzel (eds). Boston: Birkhuser, 2007, 191-197.
E.F. Keller and L.A. Segel. “Model for Chemotaxis”. Journal of Theoretical Biology Vol. 30 No. 3 (1971): 225-234.
Hillen, Thomas, and A. Stevens. “Hyperbolic Models for Chemotaxis in 1-D”. Nonlinear Analysis: Real World Applications Vol. 1 No. 3 (2000): 409-433.
H. Willianms, and O.E. Jeuseu. “Two-dimen- cional nolinear advection diffusion in a model of sunfactant spreading on a thiu liquid film”. IMA Journal of applied Mathematics, Vol. 66 No.1 (2001). pp. 55-88.