Evaluación del enriquecimiento proteico de residuos de papa y yuca con (Paecilomyces variotti)

Evaluation of protein enrichment of waste potato and cassava with (Paecilomyces variotti)

##plugins.themes.bootstrap3.article.main##

Juan Camilo Oviedo L.
Diego León Zapata R.
Lucas García E.
Natalia Echeverri S.
David Echeverri S.
Resumen

Los problemas de suministro de proteína hacen necesaria la búsqueda de alternativas distintas a las fuentes tradicionales. La proteína microbiana, celular o unicelular (PUC), es una opción favorable. Una de las ventajas de la PUC, es que emplea como sustratos residuos de actividades industriales y desechos de poscosecha, como residuos agroindustriales (RA). Dentro los RA, se encuentran los desechos de papa y yuca, los cuales no reciben actualmente un tratamiento para darles valor agregado. Una forma de valorizar estos residuos es a través del enriquecimiento proteico producto de la fermentación en estado sólido (FES). En este trabajo, empleando residuos de papa y yuca como fuente de carbono y energía, evaluamos la adición de dos fuentes de nitrógeno: sulfato de amonio (10 g/L) y peptona (10g/L) y dos niveles de humedad (10 y 30%) a través de un diseño de experimentos factorial 2 , con una duración de 24 días. La proteína fue medida por el método de Biuret, previa separación de la proteína del sustrato.
Nuestro análisis estadístico indica que los efectos combinados fueron mejores que los simples: para la papa el más alto enriquecimiento proteico fue de 166,29 %, obtenido con la combinación de humedad del 30% y sulfato de amonio como fuente de nitrógeno. Para la yuca el más alto enriquecimiento proteico fue de 171,05 %, obtenido a un 10% de humedad y con peptona como fuente de nitrógeno.


Palabras clave

Descargas

Los datos de descargas todavía no están disponibles.

##plugins.themes.bootstrap3.article.details##

Biografía del autor/a / Ver

Juan Camilo Oviedo L., Universidad Pontificia Bolivariana.

Ph.D. Profesor Titular, Docente Fac. Ing. Agroindustrial.

 

Diego León Zapata R., Universidad Pontificia Bolivariana.

Mg. Profesor Asistente, Docente Fac. Ing. Industrial.

Lucas García E., Universidad Pontificia Bolivariana.

Ingeniero Agroindustrial,

Natalia Echeverri S., Universidad Pontificia Bolivariana.

Ingeniero Agroindustrial,

David Echeverri S., Universidad Pontificia Bolivariana

Ingeniero Agroindustrial, .
Referencias

Aggelopoulos, T., Katsieris., Bekatorou, A., Pandey, A., Banat, I. M., Koutinas, A. A., 2014. Solid state fermentation of food waste mixtures for single cell protein, aroma volatiles and fat production. Science Direct. Food Chemistry. 145, p 710-716.https://doi.org/10.1016/j.foodchem.2013.07.105

Aguilar-Navarro, B., Camacho-Pozo, M., & SerratDíaz, M. de J., 2014. Enriquecimiento proteico de residuales agroindustriales mediante fermentación sólida con el hongo filamentoso Aspergillus niger. Revsita Cubana de Química, 26(1), 17–25. Consultado. http://search.ebscohost.com/login.aspx?direct=true&db=fua&AN=103359609&lang=es&site=ehost-live

Almeida, J. B., De Mancilha, I. M., Vannetti, M. C. D., & Teixeira, M., 1995. Microbial protein production by Paecilomyces variotii cultivated in eucalyptus hemicellulosic hydrolyzate. Bioresource Technology, 52, 197–200. http://doi.org/10.1016/09608524(95)00029-E

Almeida, J., Lima, U., Taqueda, M., Guaragna, F.,2003. Use of response surface methodology for selection of nutrient levels for culturing Paecilomyces variotii in eucalyptus hemicellulosic hydrolyzate. Bioresourse Technology. Volume 87, Issue 1, p 45–50.https://doi.org/10.1016/S0960-8524(02)00199-2

Altaf, M., Naveena, B. J., Venkateshwar, M., Kumar, E. V., & Reddy, G. 2006. Single step fermentation of starch to L (+) lactic acid by Lactobacillus amylophilus GV6 in SSF using inexpensive nitrogen sources to replace peptone and yeast extract - Optimization by RSM. Process Biochemistry, p 465– 472. Consultado. http://doi.org/10.1016/j.procbio.2005.07.011

Alvarez, M. Larrea, P. Paredes, M., 2010. Fermentación sólida del banano de rechazo utilizando Aspergillus niger para alimento animal. Ambato: Universidad Técnica.

Ardestani, F., Alishahi, F., 2015. Optimization of Single Cell Protein Production by Aspergillus niger Using Taguchi Approach. Journal of Food Biosciences and Technology, 5(2), p 73–79.

Azam, S., Khan, Z., Ahmad, B., Khan, I., & Ali, J.2014. Production of Single Cell Protein from Orange Peels Using Aspergillus niger and Saccharomyces cerevisiae Pakistan Council of Scientific and Industrial Research Laboratories Complex, 9(1), 14– 18. http://doi.org/10.5829/idosi.gjbb.2014.9.1.82314

Badui, S., 2006. Química de los Alimentos (Cuarta ed.). Pearson. Ciudad de México. México, pp 209-236

Biocyclopedia. 2012. Substrates Used For Production of SCP - Single Cell Protein (SCP) & Mycoprotein. In Biocyclopedia. Consultado. http://www.eplantscience.com/index/biotechnology/microbial_biotechnology/single_cell_protein_scp_and_mycoprotein/biotech_scp_substrates_used_for_production.php

Brea, O., Ortiz, A., Elías, A., Herrera, F., Motta, W.,2014. Utilización de la harina de frutos del árbol del pan (Artocarpus altilis), fermentada en estado sólido, en dietas destinadas a cerdos en preceba. Revista Cubana de Ciencia Agrícola, vol. 48, núm. 4, p. 391398

Bustamante, Z., Galindo, E., Huanca,M.,Ballesteros,F.,2008. Obtención de bioproteina a partir de bagazo de naranja (Citrus sinensis) con Aspergillus niger. Programa Fármacos, Alimentos y Cosméticos, (PROFAC), Facultad de Bioquímica y Farmacia, Universidad Mayor de San Simón.

Caridad, M., Ricardo, J., Ramos L. 2007. Fermentación en estado sólido (i). Producción de alimento animal, Tecnología Química vol. xxvii, no. 3.

Chacón, A., 2004. Perspectivas actuales de la proteína unicelular en la agricultura y la industria, Agronomía mesoamericana. vol. 15, núm. 1. p 93-106

Correia, R., Magalhaes, M., Macedo, G., 2007, Protein enrichment of pineapple waste with Saccharomyces cerevisiae by solid state bioprocessing, Jorunal of Scientific & Industrial Research. Vol 66, March, p 259 – 262

Dhillon, S., Kaur, S., Brar, S., 2013. Perspective of apple processing wastes as low-cost substrates for bioproduction of high value products: A review. Renewable and Sustainable Energy Reviews, 27, p 789–805. https://doi.org/10.1016/j.rser.2013.06.046

FINAGRO., 2014. Informe estadístico de agricultura nacional por cultivos. Consultado el 21 de enero de 2016. http://www.finagro.com.co/html/i_portals/index.php?p_origin=internal&p_name=content&p_id=MI197&p_options=#COLOMBIA

Fontes, P., Gomide, L., Neuza., Costa, N., Peternelli, L., Fontes, E., Ramos, E, 2015. Chemical composition and protein quality of mortadella formulated with carbon monoxide-treated porcine blood, LWT - Food Science and Technology, Volume 64, Issue 2, December, p 926-931.https://doi.org/10.1016/j.lwt.2015.07.004

Hoover, R. 2002. Effect of heat-moisture treatment on the structure and physicochemical properties of tuber and root starches, Carboh. Polym.: 49(4), p 425-437.https://doi.org/10.1016/S0144-8617(01)00354-X

Hsu, P., Liu, C., Liu, L., Chang, C., Yang, S., 2013, Protein enrichment and digestion improvement of napiergrass and pangolagrass with solid-state fermentation, Journal of Microbiology, Immunology and Infection, Volume 46, Issue 3, p 171-179.https://doi.org/10.1016/j.jmii.2012.04.001

Hu, C., Liu, L, Yang, S., 2013. Protein enrichment, cellulase production and in vitro digestion improvement of pangolagrass with solid state fermentation. Journal of Microbiology, Immunology and Infection, Volume 45, Issue 1, February, pp 7–14

Ibrahim, R. M., 2009. Production of single cell protein through fermentation of a perennial grass grown on saline lands with Cellulomonas biazotea, National Institute for Biotechnology and Genetic Engineering, P.O. Box 577, Faisalabad, Pakistan

Kurcz, A., Błażejak, S., Kot, A. M., Bzducha-Wróbel, A., & Kieliszek, M. (2016). Application of Industrial Wastes for the Production of Microbial Single-Cell Protein by Fodder Yeast Candida utilis. Waste and Biomass Valorization, 8(37), 1–8. http://doi.org/10.1007/s12649-016-9782-z

Madeira, J. V., Macedo, J. A., Macedo, G. A., 2011. Detoxification of castor bean residues and the simultaneous production of tannase and phytase by solid-state fermentation using Paecilomyces variotii. Science Direct. Bioresource Technology. 102, 73437348.https://doi.org/10.1016/j.biortech.2011.04.099

Merck.,2010. Potato Dextrose Agar, Microbiology Manual, 1.10130, Darmstadt, Germany 12th Edition, 389 – 390

Mitchell, D. A., Von Meien, O. F., Krieger, N., Dalsenter, F. D. H., 2004. A review of recent developments in modeling of microbial growth kinetics and intraparticle phenomena in solid-state fermentation. Biochemical Engineering Journal, 17(1), p 15–26.https://doi.org/10.1016/j.biortech.2011.04.099

Nasseri, A. T., Rasoul-Ami, S., Morowvat, M. H., Ghasemi, Y., 2011. Single Cell Protein: Production and Process. American Journal of Food Technology. http://doi.org/10.3923/ajft.2011.103.116

Orlandoni, G., 1997. Modelos de crecimiento de poblaciones bilógicas: Un enfoque de dinámica de sistemas. Economía, XXII (23), 115-146.

Oviedo, J. Casas, A., Valencia, J., Zapata, J., 2014.Análisis de la Medición de la Biomasa en Fermentación en Estado Sólido empleando el Modelo Logístico y Redes Neuronales. Información Tecnológica. Vol.25, n.4. p. 141-152.https://doi.org/10.4067/S0718-07642014000400016

Padey, A. Soccol, C. Larroche, C., 2008. Current Developments in Solid-state Fermentations. New Delhi: Asiatech Publishers, INC (Springer) p 4-8

Peleg, M., Corradini, M. G., Normand, M. D. (2007). The logistic (Verhulst) model for sigmoid microbial growth curves revisited. Food Research International, 40(7), 808–818.https://doi.org/10.1016/j.foodres.2007.01.012

Pereira, A. D., Gomide, L. A. M., Cecon, P. R., Fontes,E. A. F., Fontes, P. R., Ramos, E. M., Vidigal, J. G., 2014. Evaluation of mortadella formulated with carbon monoxide-treated porcine blood. Science Direct. Meat Science. 97, p 164 -173. https://doi.org/10.1016/j.meatsci.2014.01.017

Pereira, S. R., Ivanuša, Š., Luzeiro, J., Mateus, C., Serafim, L. S., & Xavier, A. M. R. B. 2010. Single Cell Protein production by Paecilomyces variotii from Spent Sulphite Liquor. Journal of Biotechnology, 150. Consultado en noviembre dee 2014. http://doi.org/10.1016/j.jbiotec.2010.09.802

Phetteplace, H., Jarosz, M., Uctuck, D., Spolrleder, R., 2003. Animal Sciences - Colorado State University. Recuperado el 18 de Febrero de 2009, de Animal Sciences - Colorado State University. Consultado http://ansci.colostate.edu/documents/renut/2000/hp00.htm

Primo, E., 1998. Química de los Alimentos. Síntesis, p 108

Quesada, S., 2007, Manual de experimentos de laboratorio para bioquímica, EUNED, Primera edición. p 34.

Quiñonez, J., Lecompte, A., 2007.- Modelos exponencial y logístico de la población en el suroeste de Puerto Rico. Revista de investigación en ciencias matemáticas, 1 (3): 63-78.

Rezende, M., Barbosa, A., Vasconcelos, A., Endo, A.,2002, Xylanase Production by Trichoderma harzianum rifai by Solid State Fermentation on Sugarcane Bagasse. Brazilian Journal of Micribiology, vol.33 no.1 São Paulo Jan. 2002

Ruqayyah, T., Jamal, P., Alam, M., Mirghani, M.,Jaswir, I., Ramli, N, 2014, Application of response surface methodology for protein enrichment of cassava peel as animal feed by the white-rot fungus Panus tigrinus M609RQY. Food Hydrocolloids, Volume 42, Part 2, 15 December, p 298-303

Sanchez, G. A., 2013. Evaluación de la degradación del tamo de arroz por hongos celulíticos aislados de suelos de cultivo de arroz. Tesis o trabajo de investigación presentada como requisito parcial para optar al título de Magister en Ciencias – Microbiología. Universidad Nacional de Colombia, Instituto de Biotecnología, p 75-85

Steen, A., 2014. Production of Single Cell Protein from Residual Streams from 2nd Generation Bioethanol Production. Master of Science Thesis within Biotechnology, Performed at SP Processum AB, Örnsköldsvik, Sweden, Spring 2014. p 85. Consultado el 9 de julio de 2015.

Suman, G., Nupur, M., Anuradha, S., & Pradeep, B. (2015). Single Cell Protein Production: A Review. Int.J.Curr.Microbiol.App.Sci, 4(9), 251–262.

Tacon, A., 1989. FAO. Recuperado el 20 de Enero de 2014, de Nutrición y alimentación de peces y camarones cultivados. Manual de capacitación: http://www.fao.org/docrep/field/003/ab492s/AB492S09.htm

Ukaegbu-Obi, K. M., 2016. Single Cell Protein : A Resort to Global Protein Challenge and Waste Management. J Microbiol Microb Technol, 1(1), 1–5. http://doi.org/10.13188/2474-4530.1000006

Vivas, N., Carvajal, J., 2004. Saccharina rustica una Aplicación Biotecnológica para la Alimentación Animal. Revista Facultad de Ciencias Agropecuarias, Vol. 2, No. 1., p 43 – 48

Wang, C., Li, Y., 2012. Fungal pretreatment of lignocellulosic biomass. Biotechnology Advances, 30(6), p 1447–1457. https://doi.org/10.1016/j.biotechadv.2012.03.003

Zapata, J. L., Navas, G., 2006. Manejo agronómico de la papa, Centro de Investigación la Selva, Corpoica, Antioquia.

Sistema OJS - Metabiblioteca |