Tecnología Biofloc (BFT), una alternativa sostenible para el desarrollo de la acuicultura: revisión

##plugins.themes.bootstrap3.article.main##

Fabián Guillermo Ariza Universidad Surcolombiana
Edison Mujica Rodriguez Universidad Surcolombiana 
Resumen

    Este artículo, presenta una revisión sobre las principales características de la Tecnología Biofloc (BFT), los requerimientos para el buen funcionamiento del sistema y la clase de microorganismos que la componen. De igual manera, con este documento se busca promover la aplicación de tecnología dentro de las explotaciones acuícolas regionales, principalmente en la producción de tilapia, ya que es una alternativa sostenible y amigable con el medio ambiente.

Palabras clave

Descargas

Los datos de descargas todavía no están disponibles.

##plugins.themes.bootstrap3.article.details##

Biografía del autor/a / Ver

Fabián Guillermo Ariza, Universidad Surcolombiana

Ingeniero Agrícola. Microfertisa S.A.S. 

Edison Mujica Rodriguez, Universidad Surcolombiana 

MSc en Ingeniería Agrícola y Uso Integral del Agua. Docente Universidad Surcolombiana. 

Referencias
AUNAP, 2013. Diagnóstico del Estado de la Acuicultura en Colombia, Ministerio de Agricultura y Desarrollo Rural, Bogotá, 163 pp.

Ahsan, E., Rajib, S., Alam, M., Siddik, M., & Nahar, A., 2014. Effects of Addition of Tilapia and Periphyton Substrates on Water Quality and Abundance of Plankton in Freshwater Prawn Culture Ponds. International Journal of Scientific & Tecnology Research, 272-278.

Anand, S., Kumar, S., Panigrahi, A., Ghoshal, T., Dayal, S., Biswas, G., Sundaray, J., De, D., Raja, A., Deo, A., Pillai, S., & Ravichandran, P., 2013. Effects of C:N Ratio and Substrate Integration on Periphyton Biomass, Microbial Dynamics and Growth of Penaeus Monodon Juveniles. Aquaculture International, 511-524.

Audelo, J., Martinez, L., Gómez, S., & Voltolina, D., 2012. Intensive Culture of Litopenaeus vannamei without Water Exchange and with an Artificial Substrate. Hidrobiológica , 1-7.

Avnimelech, Y., 2013. Biofloc Production Systems for Aquaculture. Southern regional aquaculture center, SRAC (4503), 1-11.

Avnimelech, Y., 2011. Tilapia Production Using Biofloc Technology Saving Water, Waste Recycling Improves Economics. Global aquaculture advocate May/June, 66-68.

Avnimelech, Y., 2009. Biofloc Technology – A practical Guide Book, The World Aquaculture Society, Israel, 182 pp.

Avnimelech, Y., 2007. Feeding with Microbial Flocs by Tilapia in Minimal Discharge Bioflocs Technology Ponds. Aquaculture, 140-147.

Azim, M., & Little, D., 2008. The Biofloc Technology (BFT) in Indoor Tanks: Water Quality, Biofloc Composition, and Growth and Welfare of Nile Tilapia (Oreochromis niloticus). Aquaculture, 29-35.

Bakar, M., Nahar, A., Rahman, M., Anh, N., Nevejan, N., & Bossier, P., 2014. Gut Weed, Enteromorpha sp. As a Partial Replacement for Commercial Feed in Nile Tilapia (Oreochromis niloticus) Culture. World Journal of Fish and Marine Sciences, 267-274.

Cardona, E., Lorgeoux, B., Chim, L., Goguenheim, J., Le Delliou, H., & Cahu, C., 2016. Biofloc Contribution to Antioxidant Defence Status, Lipid Nutrition and Reproductive Performance of Broodstock of the Shrimp Litopenaeus stylirostris: Consequences for the Quality of Eggs and Larvae. Aquaculture, 252-262.

Cardona, E., Saulnier, D., Lorgeoux, B., Chim, L., & Gueguen, Y., 2015. Rearing Effect of Biofloc on Antioxidant and Antimicrobial Transcriptional Response in Litopenaeus stylirostris Shrimp Facing an Experimental Sub-lethal Hydrogen Peroxide Stress. Fish & Shellfish Immunology, 933-939.

Castro, L., Castro, T., De Lara, R., Castro, J., & Castro, G., 2012. Sistemas Biofloc: un Avance Tecnológico en Acuicultura. Revista Digital del Departamento El Hombre y su Ambiente, 1-6.

Chu, C., & Lee, D., 2004. Multiscale Structures of Biological Flocs. Chemical Engineering Science, 1875-1883.

Collazos, L., & Arias, J., 2015. Fundamentos de la Tecnología Biofloc (BFT). Una Alternativa para la Piscicultura en Colombia. Una revisión. Orinoquía, 77-86.

Crab, R., 2010. Bioflocs Technology: an Integrated System for the Removal of Nutrients and Simultaneous Production of Feed in Aquaculture, Ghent University, Faculty of Bioscience Engineering, Belgium, 196 pp.

Crab, R., Defoirdt, T., Bossier, P., & Verstraete, W., 2012. Biofloc Technology in Aquaculture: Beneficial Effects and Future Challenges. Aquaculture, 351–356.

Crab, R., Kochva, M., Verstraete, W., & Avnimelech, Y., 2009. Bioflocs Technology Application in Over-wintering of Tilapia. Aquacultural Engineering, 105-112.

De Lorenzo, M., Souza, E., Dias, D., Costa, P., Quadros, W., & Do Nascimento, F., 2016. Intensive Hatchery Performance of Pacific White Shrimp in the Biofloc System Under Three Different Fertilization Levels. Aquacultural Engineering, 40-44.

De Schryver, P., & Verstraete, W., 2009. Nitrogen Removal from Aquaculture Pond Water by Heterotrophic Nitrogen Assimilation in Lab-scale Sequencing Batch Reactors. Bioresource Technology, 1162-1167.

De Schryver, P., Crab, R., Defoirdt, T., Boon, N., & Verstraete, W., 2008. The Basics of Bioflocs Technology: The added value for aquaculture. Aquaculture, 125-137.

Ebeling, J., Timmons, M., & Bisogni, J., 2006. Engineering Analysis of the Stoichiometry of Photoautotrophic, Autotrophic, and Heterotrophic Removal of Ammonia–Nitrogen in Aquaculture Systems. Aquaculture, 346-358.

Ekasari, J., Rivandi, D., Firdausi, A., Surawidjaja, E. H., Zairin Jr., M., Bossier, P., & De Schryver, P., 2015. Biofloc Technology Positively Affects Nile Tilapia (Oreochromis niloticus) Larvae Performance. Aquaculture, 72-77.

Emerenciano, M., Ballester, E., Cavalli, R., & Wasielesky, W., 2011a. Effect of Biofloc Technology (BFT) on the Early Postlarval Stage of Pink Shrimp Farfantepenaeus Paulensis: Growth Performance, Floc Composition and Salinity Stress Tolerance. Aquacult Int, 891-901.

Emerenciano, M., Cupertino, E., Cavalli, R., & Wasielesky, W., 2011b. Biofloc Technology Application as a Food Source in a Limited Water Exchange Nursery System for Pink Shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquaculture Research, 447-457.

Emerenciano, M., Yves, G., Arévalo, M., & Gabriela, G., 2013a. Biofloc Technology in Intensive Broodstock Farming of the Pink Shrimp Farfantepenaeus Duorarum: Spawning Performance, Biochemical Composition and Fatty Acid Profile of Eggs. Aquaculture Research, 1-33.

Emerenciano, M., Gaxiola, G., & Cuzon, G., 2013b. Biofloc Technology (BFT): A Review for Aquaculture Application and Animal Food Industry, Biomass Now-cultivation and Utilization. InTech. 301-328.

FAO, 2014. El Estado Mundial de la Pesca y la Acuicultura, Oportunidades y Desafíos, Organización de las Naciones Unidas para la Alimentación y la Agricultura, Roma, 274 pp.

FAO, 2012. El Estado Mundial de la Pesca y la Acuicultura, Organización de las Naciones Unidas para la Alimentación y la Agricultura, Roma, 251 pp.

Green, B., 2015. Performance of a Temperate-zone Channel Catfish Biofloc Technology Production System During Winter. Aquacultural Engineering, 60-67.

Hargreaves, J., 2013. Biofloc Production Systems for Aquaculture. Southern Regional Aquaculture Center, SRAC, 1-11.

Hargreaves, J., 2006. Photosynthetic Suspended Growth System in Aquaculture. Aquacultural Engineering, 344-363.

Jiang, S., 2010. Aquaculture, Capture Fisheries, and Wild Fish Stocks. Resource and Energy Economics, 65-77.

Ju, Z., Forster, I., Conquest, L., Dominy, W., Kuo, W., & Horgen, F., 2008a. Determination of Microbial Community Strutures of Shrimp Floc Culture by Biomarkers and Analysis of Floc Amino Acid Profiles. Aquaculture Research, 118-133.

Ju, Z., Forster, I., Conquest, L., & Dominy, W., 2008b. Enhanced Growth Effects on Shrimp (Litopenaeus vannamei) From Inclusion of Whole Shrimp Floc or Floc Fractions to a Formulated Diet. Aquaculture Nutrition, 533-543.

Lara, G., Krummenauer, D., Abreu, P., Poersch, L., & Wasielesky, W., 2016. The Use of Different Aerators on Litopenaeus vannamei Biofloc Culture System: Effects on Water Quality, Shrimp Growth and Biofloc Composition. Aquaculture International, 1-16.

Liang, W., Luo, G., Tan, H., Ma, N., Zhang, N., & Li, L., 2014. Efficiency of Biofloc Technology in Suspended Growth Reactors Treating Aquacultural Solid Under Intermittent Aeration. Aquacultural Engineering, 41-47.

Little, D., Murray, F., Azim, E., Leschen, W., Boyd, K., Watterson, A., & Young, J., 2008. Option for Producing a Warm Water Fish in the UK: Limit to “Green Growth” Trends in Food Science and Technology, 255-264.

Liu, L., Hu, Z., Dai, X., & Avnimelech, Y., 2014. Effects of Addition of Maize Starch on the Yield, Water Quality and Formation of Bioflocs in an Integrated Shrimp Culture System. Aquaculture, 79-86.

Liu, W., Luo, G., Tan, H., & Sun, D., 2016. Effects of Sludge Retention Time on Water Quality and Bioflocs Yield, Nutritional Composition, Apparent Digestibility Coefficients Treating Recirculating Aquaculture System Effluent in Sequencing Batch Reactor. Aquacultural Engineering, 58-64.

Long, L., Yang, J., Li, Y., Guan, C., & Wu, F., 2015. Effect of Biofloc Technology on Growth, Digestive Enzyme Activity, Hematology, and Immune Response of Genetically Improved Farmed Tilapia (Oreochromis niloticus). Aquaculture, 135-141.

Luo, G., Avnimelech, Y., Pan, Y., & Tan, H., 2013. Inorganic Nitrogen Dynamics in Sequencing Batch Reactors Using Biofloc Technology to Treat Aquaculture Sludge. Aquacultural Engineering, 73-79.

Luo, G., Gao, Q., Wang, C., Liu, W., Sun, D., Li, L., & Tan, H., 2014. Growth, Digestive Activity, Welfare, and Partial Cost-effectiveness of Genetically Improved Farmed Tilapia (Oreochromis Niloticus) Cultured in a Recirculating Aquaculture System and an Indoor Biofloc System. Aquaculture, 1-7.

Martínez, L., Emerenciano, M., Miranda, A., & Martínez, M., 2014. Microbial-based Systems for Aquaculture of Fish and Shrimp: an Updated Review. Aquaculture, 1-18.

Monroy, M., De Lara, R., Castro, J., Castro, G., & Emerenciano, M., 2013. Composición y Abundancia de Comunidades Microbianas Asociados al Biofloc en un Cultivo de Tilapia. Revista de Biología Marina y Oceanografía, 511-520.

Moriarty, D., 1997. The Role of Microorganisms in Aquaculture Ponds. Aquaculture, 333–349.

Munguia, P., Alatorre, O., Rico, E., Torres, I., Cruz, A., Ocampo, R., García, J., & Guevara, R., 2015. Perspective for Aquaponic Systems: (Omic) Technologies for Microbial Community Analysis. BioMed Research International, 1-2.

Nahar, A., Abu Bakar Siddik, M., Chaklader, R., Hanif, A., Sharker, R., & Rahman, M., 2015. Biofloc Technology in Aquaculture Systems Generates Higher Income in Mono-sex Nile Tilapia Farming in Bangladesh. Advances in Biological Research, 236-241.

Ogello, E., Musa, S., Mulanda, C., Abwao, J., & Mbonge, J., 2014. An Appraisal of the Feasibility of Tilapia Production in Ponds Using Biofloc Technology: A review. International Journal of Aquatic Science, 21-39.

Prajith, K., 2012. Application of Biofloc Technology (BFT) in the Nursery Rearing and Farming of Giant Freshwater Prawn, Macrobrachium Rosenbergii (deMan), Cochin University of Science and Technology.

Pérez, A., Pérez, C., & Hernández, M., 2013. Pond-reared Malaysian Prawn Macrobrachium Rosenbergii with the Biofloc System. Aquaculture, 105-110.

Rahman, M. M., Nagelkerke, L., Verdegem, M., Wahab, A., & Verreth, J., 2008. Relationships Among Water Quality, Food Resources, Fish Diet and Fish Growth in Polyculture Ponds: A Multivariate Approach. Aquaculture, 108-115.

Ray, A., 2012. Biofloc Technology For Super-intensive Shrimp Culture. In Y. Avnimelech, Biofloc Technology - A Practical Guide Book, 2d Edition, The World Aquaculture Society, Louisiana, 4-28.

Ray, A., & Lotz, J., 2014. Comparing a Chemoautotrophic-based Biofloc System and Three Heterotrophic-based Systems Receiving Different Carbohydrate Sources. Aquacultural Engineering, 54-61.

Ray, A., Dillon, K., & Lotz, J., 2011. Water Quality Dynamics and Shrimp (Litopenaeus vannamei) Production in Intensive, Mesohaline Culture Systems with two Levels of Biofloc Management. Aquacultural Engineering, 127–136.

Ray, A., Seaborn, G., Leffler, J., & Browdy, C., 2010. Characterization of Microbial Communities in Minimal-exchange, Intensive Aquaculture Systems and the Effects of Suspended Solids Management. Aquaculture, 130-138.

Schrader, K., Green, B., & Perschbacher, P., 2011. Development of Phytoplankton Communities and Common Off-flavors in a Biofloc Technology System Used for the Culture of Channel Catfish (Ictalurus punctatus). Aquacultural Engineering, 118-126.

Vásquez, R., Pupo, A., & Jiménez, H., 2014. Sistema Energéticamente Eficiente y de Bajo Costo para Controlar la Temperatura y Aumentar el Oxígeno en Estanques de Cultivo de Alevines de Tilapia Roja. Facultad de Ingeniería, 9-23.

Wang, C., Chang, C., Chien, Y., & Lai, H., 2015. The Performance of Coupling Membrane Filtration in Recirculating Aquaponic System for Tilapia Culture. International Biodeterioration & Biodegradation, 107, 21-30.

Wang, G., Yu, E., Xie, J., Yu, D., Li, Z., Luo, W., Qiu, L., & Zheng, Z., 2015. Effect of C/N Ratio on Water Quality in Zero-water Exchange Tanks and the Biofloc Supplementation in Feed on the Growth Performance of Crucian Carp, Carassius auratus. Aquaculture, 98-104.

Widanarni, Ekasari, J., & Maryam, S., 2012. Evaluation of Biofloc Technology Application on Water Quality and Production Performance of Red Tilapia Oreochromis sp. Cultured at Different Stocking Densities. HAYATI J Biosci, 73-80.

Wu, L., Peng, C., Peng, Y., & Ma, Y., 2012. Effect of Wastewater COD/N Ratio on Aerobic Nitrifying Sludge Granulation and Microbial Population Shift. Journal of Environmental Sciences, 234-241.

Xu, W., Morris, T., & Samocha, T., 2016. Effects of C/N Ratio on Biofloc Development, Water Quality, and Performance of Litopenaeus vannamei Juveniles in a Biofloc-based, High-density, Zero-exchange, Outdoor Tank System. Aquaculture, 169-175.

Yong, P., 2014. Biofloc Technology in Shrimp Farming: Success and Failure. Aquaculture, 13-16.

Zhao, P., Huang, J., Wang, X., Song, X., Yang, C., Zhang, X., & Wang, G., 2012. The Application of Bioflocs Technology in High-intensive, Zero Exchange Farming Systems of Marsupenaeus Japonicus. Aquaculture, 97-106.
Sistema OJS - Metabiblioteca |