Conservación de las propiedades nutraceúticas del Aloe Vera (Aloe Barbadensis Miller), mediante técnicas de secado
##plugins.themes.bootstrap3.article.main##
Se realizó el análisis de las aplicaciones y técnicas de secado para la obtención de polvo de aloe vera, usado en la elaboración de productos alimentarios, farmacéuticos y cosméticos. Para lo anterior, se tuvo en cuenta las técnicas existentes y aquellas que permiten la mayor conservación de sus propiedades nutracéuticas y funcionales para la elaboración de éstos productos, garantizando inocuidad y seguridad para el consumidor. Se realizó una descripción respecto al funcionamiento y algunas pautas de los equipos, seleccionando el método de deshidratación más adecuado para producir un producto de alta calidad. Para el desarrollo de éste, se consultaron las principales bases de datos como Science Direct, EBSCO, Springer Journals, Scopus, ProQuest Central, Redalyc, Wiley Online Library entre otras. Se determinó, que las técnicas que permite la mayor conservación de las propiedades del aloe vera fueron: secado por aspersión, liofilización y ventana refractante, debido a las bajas temperaturas usadas, la cual evita la degradación de sus componentes (dada a la alta sensibilidad del gel a temperaturas superiores a 50°C). En cuanto a costos y tiempo de operación, el secado por aspersión es la tecnología que presenta mayores beneficios.
Descargas
##plugins.themes.bootstrap3.article.details##
Ahlawat, K. S., & Khatkar, B. S. (2011). Processing, food applications and safety of aloe vera products: A review. Journal of Food Science and Technology, 48(5), 525–533. https://doi.org/10.1007/s13197-011-0229-z
Amanullah, S., Jahangir, M. M., Ikram, R. M., Sajid, M., Abbas, F., & Mallano, A. I. (2017). Aloe vera Coating Efficiency on Shelf Life of Eggplants at Differential Storage Temperatures. Journal of Northeast Agricultural University (English Edition), 23(4), 15–25. https://doi.org/10.1016/s1006-8104(17)30003-x
Bahmani, M., Shahinfard, N., Fasihzadeh, S., Mirhosseini, M., & Rafieian-Kopaei. (2016). Aloe vera: An update on its phytomedicinal, pharmaceutical and therapeutic properties. Der Pharmacia Lettre, 8(1), 206–213.
Bajpai, S. (2018). Biological importance of Aloe vera and its active constituents. In Synthesis of Medicinal Agents from Plants (Vol. 1753). Elsevier Ltd. https://doi.org/10.1016/b978-0-08-102071-5.00008-8
Baruah, A., Bordoloi, M., & Deka Baruah, H. P. (2016). Aloe vera: A multipurpose industrial crop. Industrial Crops and Products, 94, 951–963. https://doi.org/10.1016/j.indcrop.2016.08.034
Benítez, S., Achaerandio, I., Pujolà, M., & Sepulcre, F. (2015). Aloe vera as an alternative to traditional edible coatings used in fresh-cut fruits: A case of study with kiwifruit slices. LWT - Food Science and Technology, 61(1), 184–193. https://doi.org/10.1016/j.lwt.2014.11.036
Berk, Z. (2018). Freeze drying (lyophilization) and freeze concentration. In Food Process Engineering and Technology (3rd ed., pp. 567–581). Academic Press. https://doi.org/10.1016/b978-0-12-812018-7.00023-3
Bernaert, N., Van Droogenbroeck, B., Van Pamel, E., & De Ruyck, H. (2019). Innovative refractance window drying technology to keep nutrient value during processing. Trends in Food Science and Technology, 84(June 2017), 22–24. https://doi.org/10.1016/j.tifs.2018.07.029
Bialik-Wąs, K., Pluta, K., Malina, D., Barczewski, M., Malarz, K., & Mrozek-Wilczkiewicz, A. (2021). Advanced SA/PVA-based hydrogel matrices with prolonged release of Aloe vera as promising wound dressings. Materials Science and Engineering C, 120(August 2020). https://doi.org/10.1016/j.msec.2020.111667
Canche-Escamilla, G., Colli-Acevedo, P., Borges-Argaez, R., Quintana-Owen, P., May-Crespo, J. F., Cáceres-Farfan, M., Yam Puc, J. A., Sansores-Peraza, P., & Vera-Ku, B. M. (2019). Extraction of phenolic components from an Aloe vera (Aloe barbadensis Miller) crop and their potential as antimicrobials and textile dyes. Sustainable Chemistry and Pharmacy, 14(August). https://doi.org/10.1016/j.scp.2019.100168
Castro, A. M., Mayorga, E. Y., & Moreno, F. L. (2018). Mathematical modelling of convective drying of fruits: A review. Journal of Food Engineering, 223, 152–167. https://doi.org/10.1016/j.jfoodeng.2017.12.012
Cervantes, C. V., Medina-Torres, L., González-Laredo, R. F., Calderas, F., Sánchez-Olivares, G., Herrera-Valencia, E. E., Gallegos Infante, J. A., Rocha-Guzman, N. E., & Rodríguez-Ramírez, J. (2014). Study of spray drying of the Aloe vera mucilage (Aloe vera barbadensis Miller) as a function of its rheological properties. LWT - Food Science and Technology, 55(2), 426–435. https://doi.org/10.1016/j.lwt.2013.09.026
Dehnad, D., Jafari, S. M., & Afrasiabi, M. (2016). Influence of drying on functional properties of food biopolymers: From traditional to novel dehydration techniques. Trends in Food Science and Technology, 57, 116–131. https://doi.org/10.1016/j.tifs.2016.09.002
Domíguez, R., Arzate, I., Chanona, J., Welti, J., Alvarado, J., Garibay, V., & Gutiérrez, G. (2012). El gel de aloe vera: Estructura, composición quimica,procesameinto,actividad biológica e importancia en la industria farmacéutica y alimentaria. Revista Mexicana de Ingeniera Qumica, 11(1), 23–43.
Franco, S., Jaques, A., Pinto, M., Fardella, M., Valencia, P., Núñez, H., Ramírez, C., & Simpson, R. (2019). Dehydration of salmon (Atlantic salmon), beef, and apple (Granny Smith) using Refractance windowTM: Effect on diffusion behavior, texture, and color changes. Innovative Food Science and Emerging Technologies, 52(November 2018), 8–16. https://doi.org/10.1016/j.ifset.2018.12.001
Guillén, F., Díaz-Mula, H. M., Zapata, P. J., Valero, D., Serrano, M., Castillo, S., & Martínez-Romero, D. (2013). Aloe arborescens and Aloe vera gels as coatings in delaying postharvest ripening in peach and plum fruit. Postharvest Biology and Technology, 83, 54–57. https://doi.org/10.1016/j.postharvbio.2013.03.011
Horn, J., Schanda, J., & Friess, W. (2018). Impact of fast and conservative freeze-drying on product quality of protein-mannitol-sucrose-glycerol lyophilizates. European Journal of Pharmaceutics and Biopharmaceutics, 127(March), 342–354. https://doi.org/10.1016/j.ejpb.2018.03.003
Javed, S., & Atta, R. (2014). Aloe vera gel in food, health products, and cosmetics industry. In Studies in Natural Products Chemistry (1st ed., Vol. 41). Elsevier B.V. https://doi.org/10.1016/B978-0-444-63294-4.00009-7
Karam, M. C., Petit, J., Zimmer, D., Baudelaire Djantou, E., & Scher, J. (2016). Effects of drying and grinding in production of fruit and vegetable powders: A review. Journal of Food Engineering, 188, 32–49. https://doi.org/10.1016/j.jfoodeng.2016.05.001
Khaliq, G., Ramzan, M., & Baloch, A. H. (2019). Effect of Aloe vera gel coating enriched with Fagonia indica plant extract on physicochemical and antioxidant activity of sapodilla fruit during postharvest storage. Food Chemistry, 286(October 2018), 346–353. https://doi.org/10.1016/j.foodchem.2019.01.135
Khorasani, S., Danaei, M., & Mozafari, M. R. (2018). Nanoliposome technology for the food and nutraceutical industries. Trends in Food Science and Technology, 79(February), 106–115. https://doi.org/10.1016/j.tifs.2018.07.009
Krokida, M., Pappa, A., & Agalioti, M. (2012). Effect of drying on Aloe’s functional components. Procedia Food Science, 1, 1523–1527. https://doi.org/10.1016/j.profoo.2011.09.225
Lacerda, G. E. (2016). Composição química, fitoquímica e dosagem de metais pesados das cascas das folhas secas e do gel liofilizado de Aloe Vera cultivadas em hortas comunitárias da cidade de palmas, Tocantins.
Lozano, L. A., Muvdi, C., & Mejia, luz D. (2011). Estabilización del gel de Aloe Barbadensis Miller y disminución de su concentración por adsorción en columna con carbón activado. 24(1), 61–67.
Maan, A. A., Nazir, A., Khan, M. K. I., Ahmad, T., Zia, R., Murid, M., & Abrar, M. (2018). The therapeutic properties and applications of Aloe vera: A review. Journal of Herbal Medicine, 12(January), 1–10. https://doi.org/10.1016/j.hermed.2018.01.002
Medina, L., Calderas, F., Minjares, R., Femenia, A., Sánchez-Olivares, G., Gónzalez-Laredo, F. R., Santiago-Adame, R., Ramirez-Nuñez, D. M., Rodríguez-Ramírez, J., & Manero, O. (2016). Structure preservation of Aloe vera (barbadensis Miller) mucilage in a spray drying process. LWT - Food Science and Technology, 66, 93–100. https://doi.org/10.1016/j.lwt.2015.10.023
Medina, L., Núñez, D. M., Calderas, F., & González, R. F. (2019). Industrial Crops & Products Microencapsulation of gallic acid by spray drying with aloe vera mucilage ( aloe barbadensis miller ) as wall material. Industrial Crops & Products, 138(June), 111461. https://doi.org/10.1016/j.indcrop.2019.06.024
Mejia Terán, A. L. (2011). Efecto de la deshidratación por radiación infrarroja sobre algunas características fisicoquímicas de interés comercial del Aloe vera (Aloe barbadensis). 77. http://intellectum.unisabana.edu.co/handle/10818/1249?locale-attribute=en
Minjares, R., & Femenia, A. (2019). Aloe vera. In Journal of the American Academy of Dermatology (Vol. 18, Issue 4, pp. 714–720). Elsevier Inc. https://doi.org/10.1016/S0190-9622(88)70095-X
Minjares, R., Femenia, A., Comas-Serra, F., Rosselló, C., Rodríguez-González, V. M., González-Laredo, R. F., Gallegos-Infante, J. A., & Medina-Torres, L. (2016). Effect of different drying procedures on physicochemical properties and flow behavior of Aloe vera (Aloe barbadensis Miller) gel. LWT - Food Science and Technology, 74, 378–386. https://doi.org/10.1016/j.lwt.2016.07.060
Minjares, Rafael, Rodríguez, V. M., González, R. F., Eim, V., González, M. R., & Femenia, A. (2017). Effect of different drying procedures on the bioactive polysaccharide acemannan from Aloe vera ( Aloe barbadensis Miller ). Carbohydrate Polymers, 168, 327–336. https://doi.org/10.1016/j.carbpol.2017.03.087
Miranda, M., Maureira, H., Rodríguez, K., & Vega-gálvez, A. (2009). Influence of temperature on the drying kinetics , physicochemical properties , and antioxidant capacity of Aloe Vera ( Aloe Barbadensis Miller ) gel. Journal of Food Engineering, 91(2), 297–304. https://doi.org/10.1016/j.jfoodeng.2008.09.007
Mishra, L. K., & Sangma, D. (2017). Quality attributes, phytochemical profile and storage stability studies of functional ready to serve (RTS) drink made from blend of Aloe vera, sweet lime, amla and ginger. Journal of Food Science and Technology, 54(3), 761–769. https://doi.org/10.1007/s13197-017-2516-9
Mudgil, D., Barak, S., & Darji, P. (2016). Development and characterization of functional cultured buttermilk utilizing Aloe vera juice. Food Bioscience, 15, 105–109. https://doi.org/10.1016/j.fbio.2016.06.001
Nazir, A., Khan, K., Maan, A., Zia, R., Giorno, L., & Schroën, K. (2019). Membrane separation technology for the recovery of nutraceuticals from food industrial streams. Trends in Food Science and Technology, 86(June 2018), 426–438. https://doi.org/10.1016/j.tifs.2019.02.049
Nejatzadeh, F. (2013). Antibacterial activities and antioxidant capacity of Aloe vera. Organic and Medicinal Chemistry Letters, 3(1), 5. https://doi.org/10.1186/2191-2858-3-5
Nicolau-Lapeña, I., Colàs-Medà, P., Alegre, I., Aguiló-Aguayo, I., Muranyi, P., & Viñas, I. (2021). Aloe vera gel: An update on its use as a functional edible coating to preserve fruits and vegetables. Progress in Organic Coatings, 151(November 2020). https://doi.org/10.1016/j.porgcoat.2020.106007
Nindo, C. I., Powers, J. R., & Tang, J. (2010). Thermal properties of Aloe vera powder and rheology of reconstituted gels. Transactions of the ASABE, 53(4), 1193–1200.
Ortega, R., Collazo Bigliardi, S., Roselló, J., Santamarina, P., & Chiralt, A. (2017). Antifungal starch-based edible films containing Aloe vera. Food Hydrocolloids, 72, 1–10. https://doi.org/10.1016/j.foodhyd.2017.05.023
Ortiz, M. J., Gulati, T., Datta, A. K., & Ochoa-Martínez, C. I. (2015). Quantitative understanding of Refractance WindowTM drying. Food and Bioproducts Processing, 95, 237–253. https://doi.org/10.1016/j.fbp.2015.05.010
Patiño, M. J. (2016). Identificación del nivel de industrialización del Aloe vera en Colombia. Universidad de la Salle.
Raghavi, L. M., Moses, J. A., & Anandharamakrishnan, C. (2018). Refractance window drying of foods: A review. Journal of Food Engineering, 222, 267–275. https://doi.org/10.1016/j.jfoodeng.2017.11.032
Rahman, S., Carter, P., & Bhattarai, N. (2017). Aloe Vera for Tissue Engineering Applications. https://doi.org/10.3390/jfb8010006
Ramachandra, C. T., & Srinivasa, P. (2008). Processing of Aloe vera leaf gel: A review. American Journal of Agricultural and Biological Science, 3(2), 502–510.
Ratti, C. (2013). Freeze drying for food powder production. In Handbook of food powders : Processes and properties. Woodhead Publishing Limited. https://doi.org/10.1533/9780857098672.1.57
Ray, A. (2012). Scope of Aloe vera as Medicinal Plant and Skin Care. 3(June), 1–3.
Reyes, J. E., Guanoquiza, M. I., Tabilo-Munizaga, G., Vega-Galvez, A., Miranda, M., & Pérez-Won, M. (2012). Microbiological stabilization of Aloe vera (Aloe barbadensis Miller) gel by high hydrostatic pressure treatment. International Journal of Food Microbiology, 158(3), 218–224. https://doi.org/10.1016/j.ijfoodmicro.2012.07.019
Rosero, I. M. (2018). Comparación de técnicas de secado ventana Refractiva y Convección forzada en frutas tropicales. UNIVERSIDAD PONTIFICIA BOLIVARIANA.
Sabarez, H. (2016). Drying of Food Materials. In Reference Module in Food Science. Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.03416-8
Sahu, P. K., Dayal Giri, D., Singh, R., Pandey, P., Gupta, S., Kumar Shrivastava, A., Kumar, A., & Dev Pandey, K. (2013). Therapeutic and Medicinal Uses of Aloe vera: A Review. Pharmacology & Pharmacy, 4, 599–610. https://doi.org/10.4236/pp.2013.48086
Sánchez, D. I., López, J., Sendón, R., & Sanches, A. (2017). Aloe vera: Ancient knowledge with new frontiers. Trends in Food Science and Technology, 61, 94–102. https://doi.org/10.1016/j.tifs.2016.12.005
Santacruz, V., Santacruz, C., & Laguna, J. O. (2015). Physical characterization of freeze-dried foam prepared from aloe vera gel and guar gum. Revista Vitae, 22(2), 75–86. https://doi.org/10.17533/udea.vitae.v22n2a02
Shishir, M. R. I., & Chen, W. (2017). Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends in Food Science and Technology, 65, 49–67. https://doi.org/10.1016/j.tifs.2017.05.006
Solek, P., Majchrowicz, L., & Koziorowski, M. (2018). Aloe arborescens juice prevents EMF-induced oxidative stress and thus protects from pathophysiology in the male reproductive system in vitro. Environmental Research, 166(May), 141–149. https://doi.org/10.1016/j.envres.2018.05.035
Sriariyakul, W., Swasdisevi, T., Devahastin, S., & Soponronnarit, S. (2016). Drying of aloe vera puree using hot air in combination with far-infrared radiation and high-voltage electric field: Drying kinetics, energy consumption and product quality evaluation. Food and Bioproducts Processing, 100, 391–400. https://doi.org/10.1016/j.fbp.2016.08.012
Srujana, P., Kishore, V. S., Srikanth, K., & Shanmukha, P. Y. (2012). Aloe vera - A Review. 4(2), 119–123.
Szadzińska, J., Kowalski, S. J., & Stasiak, M. (2016). Microwave and ultrasound enhancement of convective drying of strawberries: Experimental and modeling efficiency. International Journal of Heat and Mass Transfer, 103, 1065–1074. https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.001
Vega, A., Uribe, E., Lemus, R., & Miranda, M. (2007). Hot-air drying characteristics of Aloe vera (Aloe barbadensis Miller) and influence of temperature on kinetic parameters. LWT - Food Science and Technology, 40(10), 1698–1707. https://doi.org/10.1016/j.lwt.2007.01.001
Vieira, J. M., Flores-López, M. L., de Rodríguez, D. J., Sousa, M. C., Vicente, A. A., & Martins, J. T. (2016). Effect of chitosan-Aloe vera coating on postharvest quality of blueberry (Vaccinium corymbosum) fruit. Postharvest Biology and Technology, 116, 88–97. https://doi.org/10.1016/j.postharvbio.2016.01.011
Yingngam, B., Kacha, W., Rungseevijitprapa, W., & Sudta, P. (2019). Response surface optimization of spray-dried citronella oil microcapsules with reduced volatility and irritation for cosmetic textile uses. Powder Technology, 355, 372–385. https://doi.org/10.1016/j.powtec.2019.07.065