Tratamientos para la Remoción de Metales Pesados Comúnmente Presentes en Aguas Residuales Industriales. Una Revisión

##plugins.themes.bootstrap3.article.main##

Diego Ivan Caviedes Rubio Universidad Cooperativa de Colombia
Ramiro Adolfo Muñoz Calderón Aguas del Huila S.A.-E.S.P
Alexandra Perdomo Gualtero
Daniel Rodríguez Acosta Servicio Nacional de Aprendizaje SENA
Ivan Javier Sandoval Rojas
Resumen

Este artículo presenta una revisión de algunas características toxicológicas de metales pesados, sus fuentes industriales, los niveles permisivos de vertimiento y 20 diferentes técnicas subdivididas en convencionales y no convencionales empleadas para la remoción de metales pesados en medios hídricos, así como las condiciones fisicoquímicas en las que estos tratamientos han presentado mejores eficiencias de remoción.

Palabras clave

Descargas

Los datos de descargas todavía no están disponibles.

##plugins.themes.bootstrap3.article.details##

Biografía del autor/a / Ver

Diego Ivan Caviedes Rubio, Universidad Cooperativa de Colombia

Magister en Ecología y Gestión de Ecosistemas Estratégicos. Docente Universidad Cooperativa de Colombia. Grupo de
Investigación en Administración de Operaciones y Producción ADOPRO

Ramiro Adolfo Muñoz Calderón, Aguas del Huila S.A.-E.S.P

Ingeniero civil. Subgerente Técnico y Operativo Aguas del Huila S.A.-E.S.P. Neiva. Calle 21 No. 1C-17

Alexandra Perdomo Gualtero

Licenciada en Ciencias Naturales y Educación Ambiental. Tutora Corporación Infancia y Desarrollo

Daniel Rodríguez Acosta, Servicio Nacional de Aprendizaje SENA

Ingeniero Forestal. Instructor Servicio Nacional de Aprendizaje SENA. carrera7A con calle 6 esquina

Ivan Javier Sandoval Rojas

Ingeniero Ambiental. Profesional Universitario CAM. Neiva.
Referencias

Ahmaruzzaman, M; 2010. A review on the utilization of fly ash. Progress in Energy and Combustion Science. 36, 327-363. 86 Revista Ingeniería y Región. 2015;13(1):73-90 Tratamientos para la Remoción de Metales Pesados... / Caviedes Rubio & Cols.

Ahmed, H; 2013. Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents. HBRC Journal. 9, 276-282.

Ali, H; Khan, E; Anwar, M; 2013. Phytoremediation of heavy metals - Concepts and applications, Chemosphere. 91, 869-881.

Alka, M; Kulkarni, S; Mungray, A; 2012. Removal of heavy metals from wastewater using micellar enhanced ultrafiltration technique: a review. Central European Journal of Chemistry, 10 (1), 27-46.

Al-Shannag, M; Al-Qodah, Z; Bani-Melhem, K; Rasool, M; Alkasrawi, M; 2015. Heavy metal ions removal from metal plating wastewater using electrocoagulation: Kinetic study and process performance, Chemical Engineering Journal. 260, 749-756.

Alijani, H; Beyki, M; Shariatinia, Z; Bayat, M; Shemirani, F, 2014. A new approach for one step synthesis of magnetic carbon nanotubes/diatomite earth composite by chemical vapor deposition method: Application for removal of lead ions. Chemical Engineering Journal. 253, 456-463.

Anastopoulos, I; Kyzas, G; 2015. Progress in batch biosorption of heavy metals onto algae, Journal of Molecular Liquids. 209, 77-86.

Baird, C; 2001. Química Ambiental. Editorial Reverté. University of Western Ontario. 622 pp.

Bakar, A; Halim, A; 2013. Treatment of automotive wastewater by coagulation-flocculation using polyaluminum chloride (PAC), ferric chloride (FeCl3) and aluminum sulfate (alum). AIP Conference Proceedings, p. 14.

Barakat, M; 2011. New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry 4, 361-377.

Barczak, M; Michalak-Zwierz, K; Gdula, K; Tyszczuk-Rotko, K; Dobrowolski, R; Da, browski, A; 2015. Ordered mesoporous carbons as effective sorbents for removal of heavy metal ions, Microporous and Mesoporous Materials. 211, 162-173.

Bi, Q; Zhang, Z; Zhao, C; Tao, Z; 2014. Study on the recovery of lithium from high Mg/Li ratio brine by nanoltration Water Science & Technology. 70 (10), 1690-1694.

Blue, L., Van Aelstyn, M.A., Matlock, M., Atwood, D; 2008. Low-level mercury removal from groundwater using a synthetic chelating ligand. Water Residual. 42, 2025-2028.

Bouhamed, F; Elouear, Z; Bouzid, J; Ouddane, B. 2015. Multi-component adsorption of copper, nickel and zinc from aqueous solutions onto activated carbon prepared from date stones. International Conference on Integrated Management of the Environment - ICIME 2014. Environmental Science Pollution Res, 6 pp.

Carrera, N; Domínguez, L; 2012. Remoción de metales pesados por métodos fisicoquímicos presentes en agua proveniente de una industria minera. Revista Sistemas Ambientales. 5(1), 27-40.

Ceglowski, M; Schroeder, G; 2015. Preparation of porous resin with Schiff base chelating groups for removal of heavy metal ions from aqueous solutions. Chemical Engineering Journal. 263, 402-411.

Cifuentes, L; García, P; Arriagada, J; Casas, J; 2009. The use of electrodialysis for metal separation and water recovery from CuSO4-H2SO4-Fe solutions. Separation and Purification Technology. 68 (1),105-108.

Cifuentes, L; Ramírez, C; Crisostomo, G; Casas, J; 2011. Separación de especies de molibdeno por electrodiálisis Chemical Engineering Communications. 198, 805-814.

Chahar, A; Singh, A; 2014. Synthesis of novel tamarind 8-hydroxyquinoline-5-sulfonic acid (THQSA) resin and their application in industrial effluent treatment. International Journal of Pharmacy and Pharmaceutical Sciences. 6(8), 340-344.

Chami, Z; Amer, N; Smets, K; Yperman, J; Carleer, R; Dumontet, S; Vangronsveld, J; 2014. Evaluation of flash and slow pyrolysis applied on heavy metal contaminated Sorghum bicolor shoots resulting from phytoremediation, Biomass and Bioenergy. 63, 268-279.

Chen, Q., Luo, Z., Hills, C., Xue, G., Tyrer, M., 2009. Precipitation of heavy metals from wastewater using simulated flue gas: sequent additions of fly ash, lime and carbon dioxide. Water Residual. 43, 2605- 2614.

Chenar, S; Karbassi, A; Zaker, N; Ghazban, F; 2013. Electroflocculation of Metals during Estuarine Mixing 87 Tratamientos para la Remoción de Metales Pesados... / Caviedes Rubio & Cols. Revista Ingeniería y Región. 2015;13(1):73-90 (Caspian sea). Department of Environment, University of Tehran, p. 17.

Crini, G., 2005. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Progress in Polymers Science. 30, 38-70.

Delgadillo, A; González, C; Prieto, F; Villagómez, J; Acevedo, O; 2011. Fitorremediación: una alternativa para eliminar la contaminación. Tropical and Subtropical Agroecosystems. 14 (2), 597-612.

Dingwang, C; Ajay, R; 2001. Removal of toxic metal ions from wastewater by semiconductor photocatalysis. Chemical Engineering Science. 56, 1561-1570.

Domenech, X; Peral, J; 2008. Química Ambiental de Sistemas Terrestres. Editorial Reverté. Barcelona, España. 239 pp.

Fan, L., Xu, X., Wang, G., Yang, J., Han, T; 2012. Experimental research for heavy metal lead and zinc smelting wastewater by electroflocculation. Advanced Materials Research. 534, 217-220.

Fu, F; Wang, Q; 2011. Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management. 92, 407-418.

Gaey, M., Marchetti, V., Clement, A., Loubinoux, B., Gerardin, P., 2010. Decontamination of synthetic solutions containing heavy metals using chemically modified sawdusts bearing polyacrylic acid chains. Journal of Wood Science. 46, 331-333.

Gherasim, C; Mikulášek, P; 2014. Influence of operating variables on the removal of heavy metal ions from aqueous solutions by nanofiltration Desalination. 343, 67-74.

González, M; Navarroa, R; Saucedoa, I; Avilaa, M; Prádanosb, P; Palaciob, L; Martínezb, F; Martínb, A. Hernández, A; 2006. Effect of phosphoric and hydrofluoric acid on the charge density of a nanofiltration membrane. Desalination. 200, 361-363.

Guastalli, A; Parrilla, R; Llorens, J; Mata, J; 2004. Application of Electrodialysis on Recovering Phosphoric Acid From an Industrial Rinsewater. En: Costa, J. 2004. Trends in Electrochemistry and Corrosion the Beginning of the 21st Century. Edicions Universitat Barcelona, 1241 pp.

Guo, L; Du, Y; Yi, Q; Li, D; Cao, L; Du, D; 2015. Efficient removal of arsenic from “dirty acid” wastewater by using a novel immersed multi-start distributor for sulphide feeding, Separation and Purification Technology. 142, 209-214.

Guerrero, J; Hernández, J; Pérez, R; 2006. Estudio preliminar del tratamiento del residual líquido (wl) de la empresa “comandante pedro sotto alba” moa nickel s.a. mediante el proceso de separación por membranas Tecnología Química. 26 (2),83-93.

Hikmet, S; Turan, U; 2014. Removal of heavy metal ions from aqueous medium using kuluncak (Malatya) vermiculites and effect of precipitation on removal. Applied Clay Science. 95, 1-8.

Hua, R; Li, Z; 2014. Sulfhydryl functionalized hydrogel with magnetism: Synthesis, characterization, and adsorption behavior study for heavy metal removal. Chemical Engineering Journal. 249, 189-200.

Huang, J; Peng, L; Zeng, G; Li, X; Zhao, Y; Liu, L; Li, F; Chai, Q; 2014. Evaluation of micellar enhanced ultrafiltration for removing methylene blue and cadmium ion simultaneously with mixed surfactants, Separation and Purification Technology. 125, 83-89.

Huisman, J.L., Schouten, G., Schultz, C., 2006. Biologically produced sulphide for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry. Hydrometallurgy 83, 106-113.

Ibrahim, H; Ammar, N; Soylak, M; Ibrahim, M; 2012. Removal of Cd(II) and Pb(II) from aquous solution using dry wáter hyacinth as a biosorbent. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 96 (1), 413-420.

Ioannou, L; Michael, C; Drosou, K; Xekoukoulotakis, N; Diamadopoulos, E; Fatta-Kassinos, D; 2013. Purificación de aguas residuales Bodega por ósmosis inversa y la oxidación del concentrado por energía solar foto-Fenton. Separation and Purification Technology. 118, 659-669.

Ismail, I; Fawzy, A; Abdel-Monem, N; Mahmoud, M; El-Halwany, M; 2012. Combined coagulation flocculation pre treatment unit for municipal wastewater, Journal of Advanced Research, 3, 331-336. 88 Revista Ingeniería y Región. 2015;13(1):73-90 Tratamientos para la Remoción de Metales Pesados... / Caviedes Rubio & Cols.

Isobe, N; Chen, X; Kim, U; Kimura, S; Wada, M; Saito, T; Isogai, A. 2013. TEMPO-oxidized cellulose hydrogel as a high-capacity and reusable heavy metal ion adsorbent, Journal of Hazardous Materials, 260, 195-201.

Jack, F; Bostock, J; Duarte, T; Harrison, B; Brosnan, J; 2013. Electrocoagulation for the removal of copper from distillery waste streams. Institute of Brewing & Distilling. Wiley Online Library, 342 pp.

Ji, Y; 2015. 16 - Membrane technologies for water treatment and reuse in the gas and petrochemical industries, En Woodhead Publishing Series in Energy, Advances in Membrane Technologies for Water Treatment Ed. Basile, A. & Cassano, A. Woodhead Publishing, Oxford, 519-536.

Karnib, M; Kabbani, A; Holail, H; Olama, Z; 2014. Heavy Metals Removal Using Activated Carbon, Silica and Silica Activated Carbon Composite, Energy Procedia, Volume 50, 113-120.

Kebir, M; Trari, M; Maachi, R; Nasrallah, N; Bellal, B; Amrane, A; 2015. Relevance of a hybrid process coupling adsorption and visible light photocatalysis involving a new hetero-system CuCo2O4/TiO2 for the removal of hexavalent chromium, Journal of Environmental Chemical Engineering, 3, 548-559.

Khaled, B; Wided, B; Béchir, H; Elimame, E; Mouna, L; Zied, T; 2015. Investigation of electrocoagulation reactor design parameters effect on the removal of cadmium from synthetic and phosphate industrial wastewater, Arabian Journal of Chemistry, 1878-5352.

Khosa, M., Jamal, M., Hussain A., Muneer, M., Zia, K., Hafeez, S; 2013. Efficiency of Aluminum and Iron Electrodes for the Removal of Heavy Metals [(Ni (II), Pb (II), Cd (II)] by Electrocoagulation Method. Journal of the Korean Chemical Society. 57 (3), 15.

Kumar, P., Ramalingam, S., Sathyaselvabala, V., Kirupha, S., Murugesan, A., Sivanesan, S., 2012. Removal of Cd(II) from aqueous solution by agricultural waste cashew nut shell. Korean J. Chemical. Engineering. 29, 756-768.

Kumari, M; Tripathi, B; 2015. Efficiency of Phragmites australis and Typha latifolia for heavy metal removal from wastewater, Ecotoxicology and Environmental Safety. 112, 80-86.

Landaburu, J; Pongrácz, E; Keiski, R; 2011. Separation of cadmium and copper from phosphorous rich synthetic waters by micellar-enhanced ultrafiltration, Separation and Purification Technology.

, 41-48.

Liu, S; Li, Z; Wang, C; Jiao, A; 2013. Enhancing both removal efficiency and permeate flux by potassium sodium tartrate (PST) in a nanofiltration process for the treatment of wastewater containing cadmium and zinc, Separation and Purification Technology.116, 131-136.

Liu, X; Lee, D; 2014. Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewaters, Bioresource Technology. 160, 24-31.

Mahamadi, C; Nharingo, T., 2010. Utilization of Eichhornia Crassipes for the Removal of Pb(II), Cd(II), and Zn(II) from Aquatic Environments: An Adsorption Isotherm Study. Environmental Technology. 31(11), 1221-1228.

Mahmoud, A; Hoadley, A; 2012. An evaluation of a hybrid ion exchange electrodialysis process in the recovery of heavy metals from simulated dilute industrial wastewater. Water Research. 46, 3364-3376.

Mandel, k; Hutter, F; Gellermann, C; Sextl, G; 2013. Reusable superparamagnetic nanocomposite particles for magnetic separation of iron hydroxide precipitates to remove and recover heavy metal ions from aqueous solutions, Separation and Purification Technology. 109, 144-147.

Mansour, M; Mojerlou, F; Nazarzadeh, E; 2014. Nanogel and superparamagnetic nanocomposite based on sodium alginate for sorption of heavy metal ions. Carbohydrate Polymers. 106, 34-41.

MADS; 2015. Ministerio de Ambiente y Desarrollo Sostenible. República de Colombia. Resolución 0631 de 2015 “Por la cual se establecen los parámetros y los valores límites máximos permisibles en vertimientos puntuales a cuerpos de aguas superficiales y a sistemas de alcantarillado público, y se dictan otras disposiciones, 62 pp.

Méndez, R; Novelo, A; Coronado, V; Castillo, E; Sauri, M; 2008. Remoción de materia orgánica y metales pesados de lixiviados por flotación con aire disuelto. Ingeniería. 12, 13-19. 89 Tratamientos para la Remoción de Metales Pesados... / Caviedes Rubio & Cols. Revista Ingeniería y Región. 2015;13(1):73-90

Morante, G; 2002. Electrocoagulación de Aguas Residuales. Revista Colombiana de Física. 34 (2), 484-487.

Mubarak, N; Alicia, R; Abdullah, E; Sahu, J; Ayu Haslija, A; Tan, J; 2013. Statistical optimization and kinetic studies on removal of Zn2+ using functionalized carbon nanotubes and magnetic biochar, Journal of Environmental Chemical Engineering. 1, 486-495

Nair, V; Panigrahy, A; Vinua, R; 2014. Development of Novel Chitosan-Lignin Composites for Adsorption of Dyes and Metal Ions from Wastewater. Chemical Engineering Journal. 201, 1-51.

Nemerow, N; Dasgupta, A; 1998. Tratamiento de Vertidos Industriales Peligrosos. Ed. Dias de Santos. Madrid, 822 pp.

Nguyen, T; Ngo, H; Guo, W; Zhang, J; Liang, S; Yue, Q; Li, Q; Nguyen, T; 2013. Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater. Bioresource Technology. 148, 574-585.

O’Connell, D; Birkinshaw, C; O’Dwyer, T; 2008. Heavy metal adsorbents prepared from the modification of cellulose: A review. Bioresource Technology. 99, 6709 - 6724.

Osei Boamah, P; Huang, Y; Hua, M; Zhang, Q; Wu, J; Onumah, J; Sam-Amoah, L; Osei Boamah, P; 2015. Sorption of heavy metal ions onto carboxylate chitosan derivatives—A mini-review, Ecotoxicology and Environmental Safety. 16, 113-120.

Paez, C; Taborda, G; 2006. La Fotocatálisis: Aspectos Fundamentales para una Buena Remoción de Contaminantes. Revista Universidad de Caldas, 7, 71-88.

Palakkeel, A; Veetil, D., Mercier, G., Blais, J. F., Chartier, M. et Tran, L; 2013. Simultaneous removal of Cu and PAHs from dredged sediments using flotation. J. Soils Sediments, 13 (8), 1502-1514.

Palanivelu, K; Vellaichamy, S; 2011. Preconcentration and separation of copper, nickel and zinc in aqueous samples by flame atomic absorption spectrometry after column solid-phase extraction onto MWCNTs impregnated with D2EHPA-TOPO mixture, Journal of Hazardous Materials, 185, 1131-1139.

Polat, H; Erdogan, D; 2007. Heavy metal removal from waste waters by ion flotation, Journal of Hazardous Materials. 148, 267-273.

Prado, M; Arruda, S; Ulson, G; Ulson, A; 2014. Study of lead (II) adsorption onto activated carbon originating from cow bone, Journal of Cleaner Production. 65, 342-349.

Prasetyo, E. Zakki, M; 2013. Removal of Hg and Pb in Aqueous Solution Using Coal Fly Ash Adsorbent. Procedia Earth and Planetary Science. 6, 377-382.

Ren, X; Chen, C; Nagatsu, M; Wang, X; 2011. Carbon nanotubes as adsorbents in environmental pollution management: A review, Chemical Engineering Journal. 170, 395-410.

Rio, S; Delebarre, A; 2003. Removal of mercury in aqueous solution by fluidized bed plant fly ash. Fuel 82. 153-159.

Sadyrbaeva, T; 2014. Recovery of Cobalt(II) by the Hybrid Liquid Membrane - Electrodialysis - Electrolysis Process, Electrochimica Acta. 133, 161-168.

SDAB; 2010. Concentraciones de Referencia para los Vertimientos Industriales Realizados a la Red de Alcantarillado y de los Vertimientos Industriales y Domésticos Efectuados a Cuerpos de Agua de la Ciudad de Bogotá. Primer Informe. Secretaria Distrital de Ambiente Bogotá (SDAB), Centro de Investigaciones en Ingeniería Ambiental - CIIA Departamento de Ingeniería Civil y Ambiental Universidad de los Andes, Bogotá. Colombia, p. 163.

Schwarze, M; Gross, M; Moritz, M; Buchner, G; Kapitzki, L; Chiappisi, L; Gradzielski, M; 2015. Micellar enhanced ultrafiltration (MEUF) of metal cations with oleylethoxycarboxylate, Journal of Membrane Science. 478, 140-147.

Singha, A; Guleria, A; 2014. Chemical modification of cellulosic biopolymer and its use in removal of heavy metal ions from wastewater. International Journal of Biological Macromolecules. 67, 409-417.

Sjahrul, M; Arifin, D; 2012. Phytoremediation of Cd2+ by Marine Phytoplanktons, Tetracelmis chuii and Chaetoceros calcitrans. Int. J. Chemestry. 4 (1), 69-74.

Spiro, T; Stigliani, W; 2006. Química Medioambiental. 2° Edición. Editorial Pearson Prentice Hall. 504 pp. 90 Revista Ingeniería y Región. 2015;13(1):73-90 Tratamientos para la Remoción de Metales Pesados... / Caviedes Rubio & Cols.

Sthiannopkao, S; Sreesai S; 2009 Utilization of pulp and paper industrial wastes to remove heavy metals from metal finishing wastewater. Journal of Environmental Management. 90, 3283-3289.

Taylor, J; Wiesner, M; 2002. Membranas. Capítulo 11. En: AWWA. Calidad y Tratamiento del Agua. Manual de suministros de Agua Comunitaria. McGraw Hill. Madrid, 707 - 779 pp.

Tu, K; Nghiem, L; Chivas, A; 2010. Boron removal by reverse osmosis membranes in seawater desalination applications, Separation and Purification Technology, 75, 87-101.

Visa, M; Chelaru, A; 2014. Hydrothermally modified fly ash for heavy metals and dyes removal in advanced wastewater treatment. Applied Surface Science 303,14-22.

Wan Ngah, W; Teong, L; Hanafiah, M; 2011. Adsorption of dyes and heavy metal ions by chitosan composites: A review, Carbohydrate Polymers, 83, 1446 - 1456.

Wang, J; Chen, C; 2009. Biosorbents for heavy metals removal and their future, Biotechnology Advances. 27, 195 - 226

Wen, L; Jinren, N; Xiaochen, Y; 2014. Synergy of photocatalysis and adsorption for simultaneous removal of Cr(VI) and Cr(III) with TiO2 and titanate nanotubes. Water Research. 53, 12-25

Wang, X; Wang, Y; Wang, X; Liu, M; Xia, S; Yin, D; Zhao, J; 2011. Microwave-assisted preparation of bamboo charcoal-based iron-containing adsorbents for Cr(VI) removal. Chemical Engineering Journal. 174, 326 - 332.

Xu, Y; Zhang, J; Liang, Y; Zhou, J; Zhao, J; Ruan, X; Xu, Z; Qian, G; 2015. Synchronous cyanide purification with metals removal in the co-treatment of Zn-CN and Ni electroplating wastewaters via the Ni2+-assisted precipitation of LDH, Separation and Purification Technology. 145, 92-97.

Zewail, T; Yousef, N; 2015. Kinetic study of heavy metal ions removal by ion exchange in batch conical air spouted bed, Alexandria Engineering Journal,54, 83-90.

Zheng, Y; Xiong, C; Yao, C; Ye, F; Jiang, J; Zheng, X; Zheng, Q; 2015. Adsorption performance and mechanism for removal of Cd(II) from aqueous solutions by D001 cation-exchange resin. Water Science & Technology, 69 (4), 833-839.

Sistema OJS - Metabiblioteca |