Subproductos generados en el tratamiento y valorización de residuos sólidos urbanos dentro del concepto de biorrefinería: una revisión sistemática
##plugins.themes.bootstrap3.article.main##
Esta revisión tiene como objetivo recopilar y resumir las investigaciones llevadas a cabo actualmente asociadas a la obtención de subproductos generados a partir de los residuos sólidos urbanos (RSU) empleando diversos procesos dentro del concepto de las biorrefinerías. Se realizó una búsqueda bibliográfica utilizando la base de datos DIALNET, SCIENCEDIRECT, GOOGLE SCHOLAR y ACADEMIC de los cuales se incluyeron artículos en inglés y español publicados entre julio del 2008 de junio del 2020. Se expulsaron los artículos de años anteriores, artículos que no informan subproductos, informes de los temas y capítulos de libros. Esta revisión mostro que a partir de los RSU se puede generar varios productos que tienen un gran valor tanto para la fabricación de productos como en el comercio, por lo tanto, se recomiendan más investigaciones al respecto. Dentro de los productos generados se mencionan el biogás, biometano, bioetanol, biohidrógeno, ácidos grasos volátiles, ácido láctico, Biofertilizantes y enmiendas agrícolas. Además, la mayoría de los estudios analizados sobre la producción de los subproductos se han realizado en modo discontinuo obteniendo un solo producto, por lo que no se enmarca dentro del concepto de biorrefinería. La idea es proporcionar nuevos conocimientos alternos para implementar el desarrollo y la implementación de una biorrefinería a gran escala usando como materia prima los residuos sólidos urbanos que están compuestos principalmente por proteínas, ácidos acético, lignina entre otros, que por medio de la unión de varios procesos bioquímicos es posible obtener biocombustibles, productos químicos y nutrientes tales como biogás, bioetanol, biohidrógeno, ácido láctico, ácidos grasos volátiles, biofertilizantes, logrando impactos positivos ambientales, ecológicos, sociales, económicos y técnicos.
Descargas
##plugins.themes.bootstrap3.article.details##
Abad, V., Avila, R., Vicent, T., & Font, X. (2019). Promoting circular economy in the surroundings of an organic fraction of municipal solid waste anaerobic digestion treatment plant: Biogas production impact and economic factors. Bioresource Technology, 283(February), 10–17. https://doi.org/10.1016/j.biortech.2019.03.064
Adekunle, K. F., & Okolie, J. A. (2015). A Review of Biochemical Process of Anaerobic Digestion. International Journal of Environmental Research and Public Health, 15(10), 205–212. https://doi.org/10.3390/ijerph15102224
Almomani, F. (2020). Prediction of biogas production from chemically treated co-digested agricultural waste using artificial neural network. Fuel, 280(April), 118573. https://doi.org/10.1016/j.fuel.2020.118573
Alves de Oliveira, R., Komesu, A., Vaz Rossell, C. E., & Maciel Filho, R. (2018). Challenges and opportunities in lactic acid bioprocess design—From economic to production aspects. Biochemical Engineering Journal, 133, 219–239. https://doi.org/10.1016/j.bej.2018.03.003
Antoniou, N., Monlau, F., Sambusiti, C., Ficara, E., Barakat, A., & Zabaniotou, A. (2019). Contribution to Circular Economy options of mixed agricultural wastes management: Coupling anaerobic digestion with gasification for enhanced energy and material recovery. Journal of Cleaner Production, 209, 505–514. https://doi.org/10.1016/j.jclepro.2018.10.055
Arango Bedoya, O., & Sanchez Sousa, L. (2009). Tratamiento de aguas residuales de la industria láctea en sistemas anaerobios tipo uasb. Biotecnología En El Sector Agropecuario y Agroindustrial: BSAA, 7(2), 24–31.
Aryal, N., Kvist, T., Ammam, F., Pant, D., & Ottosen, L. D. M. (2018). An overview of microbial biogas enrichment. Bioresource Technology, 264(June), 359–369. https://doi.org/10.1016/j.biortech.2018.06.013
Atasoy, M., Owusu-Agyeman, I., Plaza, E., & Cetecioglu, Z. (2018). Bio-based volatile fatty acid production and recovery from waste streams: Current status and future challenges. Bioresource Technology, 268, 773–786. https://doi.org/10.1016/j.biortech.2018.07.042
Begum, S., Anupoju, G. R., Sridhar, S., Bhargava, S. K., Jegatheesan, V., & Eshtiaghi, N. (2017). Evaluation of single and two stage anaerobic digestion of landfill leachate : effect of ph and initial organic loading rate on volatile fatty acid (VFA) and biogas production. Bioresource Technology. https://doi.org/10.1016/j.biortech.2017.12.069
Bittencourt, E., Cristine, A., Rosa, D., Bianchi, A., Medeiros, P., Kaur, S., Larroche, C., & Ricardo, C. (2018). Screening and bioprospecting of anaerobic consortia for biohydrogen and volatile fatty acid production in a vinasse based medium through dark fermentation. Process Biochemistry, November 2017, 0–1. https://doi.org/10.1016/j.procbio.2018.01.012
Bonk, F., Bastidas-Oyanedel, J. R., Yousef, A. F., Schmidt, J. E., & Bonk, F. (2017). Exploring the selective lactic acid production from food waste in uncontrolled pH mixed culture fermentations using different reactor configurations. Bioresource Technology, 238, 416–424. https://doi.org/10.1016/j.biortech.2017.04.057
Bravo, M., De Brito, J., Pontes, J., & Evangelista, L. (2015). Mechanical performance of concrete made with aggregates from construction and demolition waste recycling plants. Journal of Cleaner Production, 99(2015), 59–74. https://doi.org/10.1016/j.jclepro.2015.03.012
Castillo Martinez, F. A., Balciunas, E. M., Salgado, J. M., Domínguez González, J. M., Converti, A., & Oliveira, R. P. de S. (2013). Lactic acid properties, applications and production: A review. Trends in Food Science and Technology, 30(1), 70–83. https://doi.org/10.1016/j.tifs.2012.11.007
Cerda, A., Artola, A., Font, X., Barrena, R., Gea, T., & Sánchez, A. (2018). Composting of food wastes: Status and challenges. Bioresource Technology, 248, 57–67. https://doi.org/10.1016/j.biortech.2017.06.133
Deus, R. M., Mele, F. D., Bezerra, B. S., & Battistelle, R. A. G. (2020). A municipal solid waste indicator for environmental impact: Assessment and identification of best management practices. Journal of Cleaner Production, 242, 118433. https://doi.org/10.1016/j.jclepro.2019.118433
Duan, Y., Pandey, A., Zhang, Z., Awasthi, M. K., Bhatia, S. K., & Taherzadeh, M. J. (2020). Organic solid waste biorefinery: Sustainable strategy for emerging circular bioeconomy in China. Industrial Crops and Products, 153(March), 112568. https://doi.org/10.1016/j.indcrop.2020.112568
FAO, MINENERGIA, PNUD, & GEF. (2011). Manual del Biogás. Proyecto CHI/00/G32, 120. https://doi.org/10.1073/pnas.0703993104
FNB. (2020). Estadistica de la Demanda Nacional de Alcohol Carburante (Etanol). Federación Nacional de Biocombustibles. https://www.fedebiocombustibles.com/estadistica-produccion-titulo-Alcohol_Carburante_(Etanol).htm
Fradinho, J. C., Oehmen, A., & Reis, M. A. M. (2014). Photosynthetic mixed culture polyhydroxyalkanoate (PHA) production from individual and mixed volatile fatty acids (VFAs): Substrate preferences and co-substrate uptake. Journal of Biotechnology. https://doi.org/10.1016/j.jbiotec.2014.05.035
Gao, X., Yu, Q., Li, X. S., & Yuan, Y. (2020). Assessing the modification efficiency of waste glass powder in hydraulic construction materials. Construction and Building Materials, 263. https://doi.org/10.1016/j.conbuildmat.2020.120111
Grima, N., & Singh, S. J. (2020). The self-(in)sufficiency of the Caribbean: Ecosystem services potential Index (ESPI) as a measure for sustainability. Ecosystem Services, 42(February), 101087. https://doi.org/10.1016/j.ecoser.2020.101087
Grupo Bancolombia. (2020). Informe especial: el petróleo está en una coyuntura sin precedentes. https://www.grupobancolombia.com/wps/portal/empresas/capital-inteligente/actualidad-economica-sectorial/sector-petroleo/petroleo-esta-en-coyuntura-sin-precedentes-por-crisis-mundial#:~:text=Por su parte%2C la producción de gas natural de Colombia,alta des
Gu, T., Yin, C., Ma, W., & Chen, G. (2019). Municipal solid waste incineration in a packed bed: A comprehensive modeling study with experimental validation. Applied Energy, 247(January), 127–139. https://doi.org/10.1016/j.apenergy.2019.04.014
Gu, X. Y., Liu, J. Z., & Wong, J. W. C. (2018). Control of lactic acid production during hydrolysis and acidogenesis of food waste. Bioresource Technology, 247(September), 711–715. https://doi.org/10.1016/j.biortech.2017.09.166
Işıldar, A., van Hullebusch, E. D., Lenz, M., Du Laing, G., Marra, A., Cesaro, A., Panda, S., Akcil, A., Kucuker, M. A., & Kuchta, K. (2019). Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE) – A review. Journal of Hazardous Materials, 362(January 2018), 467–481. https://doi.org/10.1016/j.jhazmat.2018.08.050
Karouach, F., Bakraoui, M., El Gnaoui, Y., Lahboubi, N., & El Bari, H. (2020). Effect of combined mechanical–ultrasonic pretreatment on mesophilic anaerobic digestion of household organic waste fraction in Morocco. Energy Reports, 6, 310–314. https://doi.org/10.1016/j.egyr.2019.11.081
Khalil, M., Berawi, M. A., Heryanto, R., & Rizalie, A. (2019). Waste to energy technology: The potential of sustainable biogas production from animal waste in Indonesia. Renewable and Sustainable Energy Reviews, 105(February), 323–331. https://doi.org/10.1016/j.rser.2019.02.011
Kummamuru, B. (2017). WBA Global Bioenergy Statistics 2017. World Bioenergy Association, 80. https://doi.org/10.1016/0165-232X(80)90063-4
Lalak, J., Kasprzycka, A., Martyniak, D., & Tys, J. (2016). Effect of biological pretreatment of Agropyron elongatum “BAMAR” on biogas production by anaerobic digestion. Bioresource Technology, 200, 194–200. https://doi.org/10.1016/j.biortech.2015.10.022
Li, K., Liu, R., & Sun, C. (2015). Bioresource Technology Comparison of anaerobic digestion characteristics and kinetics of four livestock manures with different substrate concentrations. Bioresource Technology, 198, 133–140. https://doi.org/10.1016/j.biortech.2015.08.151
Li, K., Liu, R., & Sun, C. (2016). A review of methane production from agricultural residues in China. Renewable and Sustainable Energy Reviews, 54, 857–865. https://doi.org/10.1016/j.rser.2015.10.103
Liu, Z., Zhang, C., Lu, Y., Wu, X., Wang, L., Wang, L., Han, B., & Xing, X. H. (2013). States and challenges for high-value biohythane production from waste biomass by dark fermentation technology. Bioresource Technology, 135, 292–303. https://doi.org/10.1016/j.biortech.2012.10.027
Lord, D., Hernandez, R., Todd, W., Zappi, M., Revellame, E., Holmes, W., & Mondala, A. (2016). Extent of inhibition and utilization of volatile fatty acids as carbon sources for activated sludge microbial consortia dedicated for biodiesel production. Renewable Energy, 96, 11–19. https://doi.org/10.1016/j.renene.2016.04.068
Maldonado, R., Acosta, B., Osorio, J., Soto, D., & Zeppieri, S. (2014). Selection and design of a scheme of CH4-C02 seperation of a biogas stream. Revista de La Facultad de Ingenieria, 29(1), 115–126.
Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F., & Erasmi, S. (2016). Greenhouse gas emissions from soils—A review. Chemie Der Erde, 76(3), 327–352. https://doi.org/10.1016/j.chemer.2016.04.002
Ongondo, F. O., Williams, I. D., & Cherrett, T. J. (2011). How are WEEE doing? A global review of the management of electrical and electronic wastes. Waste Management, 31(4), 714–730. https://doi.org/10.1016/j.wasman.2010.10.023
Paes, L. A. B., Bezerra, B. S., Deus, R. M., Jugend, D., & Battistelle, R. A. G. (2019). Organic solid waste management in a circular economy perspective – A systematic review and SWOT analysis. Journal of Cleaner Production, 239, 118086. https://doi.org/10.1016/j.jclepro.2019.118086
Parra Huertas, R. A. (2015). Anaerobic digestión: biotechnological mechanisms in waste water treatments and their application in food industry. Producción + Limpia, 10(2), 142–159. http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S1909-04552015000200014
Phanthumchinda, N., Thitiprasert, S., Tanasupawat, S., Assabumrungrat, S., & Thongchul, N. (2018). Process and cost modeling of lactic acid recovery from fermentation broths by membrane-based process. Process Biochemistry, 68, 205–213. https://doi.org/10.1016/j.procbio.2018.02.013
Probst, M., Walde, J., Pümpel, T., Wagner, A. O., & Insam, H. (2015). A closed loop for municipal organic solid waste by lactic acid fermentation. Bioresource Technology, 175, 142–151. https://doi.org/10.1016/j.biortech.2014.10.034
Rama, M., Cort, A., García-guaita, F., & Gonz, S. (2019). Embedding environmental , economic and social indicators in the evaluation of the sustainability of the municipalities of Galicia ( northwest of Spain ). 234. https://doi.org/10.1016/j.jclepro.2019.06.158
Ramírez Jaime, A. (2013). Membranas compuestas base polimérica: preparación, caracterización y estudios para la separación de gases. 114.
Ramos, D. (2011). Analisis del concepto de residuos solidos domiciliarios de Torreón Coahuila. Tesis de Pregrado, 11(2), 10–14. https://doi.org/10.16194/j.cnki.31-1059/g4.2011.07.016
Ravindran, B., & Sekaran, G. (2010). Bacterial composting of animal fleshing generated from tannery industries. Waste Management, 30(12), 2622–2630. https://doi.org/10.1016/j.wasman.2010.07.013
Ren, N., Guo, W., Liu, B., Cao, G., & Ding, J. (2011). Biological hydrogen production by dark fermentation : challenges and prospects towards scaled-up production. Current Opinion in Biotechnology, 22, 365–370. https://doi.org/10.1016/j.copbio.2011.04.022
Rusmanis, D., Shea, R. O., Wall, D. M., Murphy, J. D., Rusmanis, D., Shea, R. O., Wall, D. M., Murphy, J. D., & Rusmanis, D. (2019). Biological hydrogen methanation systems – an overview of design and efficiency efficiency. Bioengineered, 10(1), 604–634. https://doi.org/10.1080/21655979.2019.1684607
Sahito, A. R., & Mahar, R. B. (2014). Enhancing methane production from rice straw co-digested with buffalo dung by optimizing effect of substrate ratio, alkaline doze and particle size. Journal of Animal and Plant Sciences, 24(4), 1076–1084.
Sarsaiya, S., Jain, A., Kumar, S., & Duan, Y. (2019). Bioresource Technology Microbial dynamics for lignocellulosic waste bioconversion and its importance with modern circular economy , challenges and future perspectives. Bioresource Technology, 291(June), 121905. https://doi.org/10.1016/j.biortech.2019.121905
Soobhany, N. (2019). Insight into the recovery of nutrients from organic solid waste through biochemical conversion processes for fertilizer production: A review. Journal of Cleaner Production, 241, 118413. https://doi.org/10.1016/j.jclepro.2019.118413
Thiriet, P., Bioteau, T., & Tremier, A. (2020). Optimization method to construct micro-anaerobic digesters networks for decentralized biowaste treatment in urban and peri-urban areas. Journal of Cleaner Production, 243. https://doi.org/10.1016/j.jclepro.2019.118478
Trad, Z., Akimbomi, J., Vial, C., Larroche, C., Taherzadeh, M. J., & Fontaine, J. P. (2015). Development of a submerged anaerobic membrane bioreactor for concurrent extraction of volatile fatty acids and biohydrogen production. Bioresource Technology, 196, 290–300. https://doi.org/10.1016/j.biortech.2015.07.095
Tyagi, V. K., Fdez-Güelfo, L. A., Zhou, Y., Álvarez-Gallego, C. J., Garcia, L. I. R., & Ng, W. J. (2018). Anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW): Progress and challenges. Renewable and Sustainable Energy Reviews, 93(April), 380–399. https://doi.org/10.1016/j.rser.2018.05.051
Varnero, M. T., Carú, M., Galleguillos, K., & Achondo, P. (2012). Tecnologías disponibles para la purificación de biogás usado en la generación eléctrica. Informacion Tecnologica, 23(2), 31–40. https://doi.org/10.4067/S0718-07642012000200005
Wainaina, S., Awasthi, M. K., Sarsaiya, S., Chen, H., Singh, E., Kumar, A., Ravindran, B., Awasthi, S. K., Liu, T., Duan, Y., Kumar, S., Zhang, Z., & Taherzadeh, M. J. (2020). Resource recovery and circular economy from organic solid waste using aerobic and anaerobic digestion technologies. Bioresource Technology, 301, 122778. https://doi.org/10.1016/j.biortech.2020.122778
Wainaina, S., Lukitawesa, Kumar Awasthi, M., & Taherzadeh, M. J. (2019). Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: A critical review. Bioengineered, 10(1), 437–458. https://doi.org/10.1080/21655979.2019.1673937
Wang, J., & Wan, W. (2008). Effect of temperature on fermentative hydrogen production by mixed cultures. International Journal of Hydrogen Energy, 33(20), 5392–5397. https://doi.org/10.1016/j.ijhydene.2008.07.010
Wang, J., & Wan, W. (2009). Factors influencing fermentative hydrogen production: A review. International Journal of Hydrogen Energy, 34(2), 799–811. https://doi.org/10.1016/j.ijhydene.2008.11.015
Yen, H. W., Li, R. J., & Ma, T. W. (2011). The development process for a continuous acetone-butanol-ethanol (ABE) fermentation by immobilized Clostridium acetobutylicum. Journal of the Taiwan Institute of Chemical Engineers, 42(6), 902–907. https://doi.org/10.1016/j.jtice.2011.05.006
Yentekakis, I. V., & Goula, G. (2017). Biogas management: Advanced utilization for production of renewable energy and added-value chemicals. Frontiers in Environmental Science, 5(FEB). https://doi.org/10.3389/fenvs.2017.00007
Yu, L., Wang, H., Wang, G., Song, W., Huang, Y., Li, S. G., Liang, N., Tang, Y., & He, J. S. (2013). A comparison of methane emission measurements using eddy covariance and manual and automated chamber-based techniques in Tibetan Plateau alpine wetland. Environmental Pollution, 181, 81–90. https://doi.org/10.1016/j.envpol.2013.06.018
Zhang, F., Chen, Y., Dai, K., Shen, N., & Zeng, R. J. (2015). The glucose metabolic distribution in thermophilic (55 °c) mixed culture fermentation: A chemostat study. International Journal of Hydrogen Energy, 40(2), 919–926. https://doi.org/10.1016/j.ijhydene.2014.11.098
Zhang, L., Loh, K. C., & Zhang, J. (2019). Enhanced biogas production from anaerobic digestion of solid organic wastes: Current status and prospects. In Bioresource Technology Reports (Vol. 5). Elsevier Ltd. https://doi.org/10.1016/j.biteb.2018.07.005
Zhang, S., Guo, H., Du, L., Liang, J., Lu, X., Li, N., & Zhang, K. (2015). Influence of NaOH and thermal pretreatment on dewatered activated sludge solubilisation and subsequent anaerobic digestion: Focused on high-solid state. Bioresource Technology, 185, 171–177. https://doi.org/10.1016/j.biortech.2015.02.050
Zheng, X., Chen, Y., Wang, X., & Wu, J. (2017). Using mixed sludge-derived short-chain fatty acids enhances power generation of microbial fuel cells. Energy Procedia, 105, 1282–1288. https://doi.org/10.1016/j.egypro.2017.03.458
Zhou, M., Yan, B., Wong, J. W. C., & Zhang, Y. (2018). Enhanced volatile fatty acids production from anaerobic fermentation of food waste: A mini-review focusing on acidogenic metabolic pathways. Bioresource Technology, 248, 68–78. https://doi.org/10.1016/j.biortech.2017.06.121