Subproductos generados en el tratamiento y valorización de residuos sólidos urbanos dentro del concepto de biorrefinería: una revisión sistemática

Byproducts generated in the treatment and valorization of urban solid waste within the concept of biorefinery: A systematic review

##plugins.themes.bootstrap3.article.main##

Jairo Smith Triviño Pineda
Claudia Yolanda Reyes
Javier Eduardo Sánchez Ramírez
Resumen

Esta revisión tiene como objetivo recopilar y resumir las investigaciones llevadas a cabo actualmente asociadas a la obtención de subproductos generados a partir de los residuos sólidos urbanos (RSU) empleando diversos procesos dentro del concepto de las biorrefinerías. Se realizó una búsqueda bibliográfica utilizando la base de datos DIALNET, SCIENCEDIRECT, GOOGLE SCHOLAR y ACADEMIC de los cuales se incluyeron artículos en inglés y español publicados entre julio del 2008 de junio del 2020. Se expulsaron los artículos de años anteriores, artículos que no informan subproductos, informes de los temas y capítulos de libros. Esta revisión mostro que a partir de los RSU se puede generar varios productos que tienen un gran valor tanto para la fabricación de productos como en el comercio, por lo tanto, se recomiendan más investigaciones al respecto. Dentro de los productos generados se mencionan el biogás, biometano, bioetanol, biohidrógeno, ácidos grasos volátiles, ácido láctico, Biofertilizantes y enmiendas agrícolas. Además, la mayoría de los estudios analizados sobre la producción de los subproductos se han realizado en modo discontinuo obteniendo un solo producto, por lo que no se enmarca dentro del concepto de biorrefinería. La idea es proporcionar nuevos conocimientos alternos para implementar el desarrollo y la implementación de una biorrefinería a gran escala usando como materia prima los residuos sólidos urbanos que están compuestos principalmente por proteínas, ácidos acético, lignina entre otros, que por medio de la unión de varios procesos bioquímicos es posible obtener biocombustibles, productos químicos y nutrientes tales como biogás, bioetanol, biohidrógeno, ácido láctico, ácidos grasos volátiles, biofertilizantes, logrando impactos positivos ambientales, ecológicos, sociales, económicos y técnicos.

Palabras clave

Descargas

Los datos de descargas todavía no están disponibles.

##plugins.themes.bootstrap3.article.details##

Biografía del autor/a / Ver

Jairo Smith Triviño Pineda, Universidad de la Amazonía

Investigador, Ingeniería Agrícola, estudiante de la Maestría en Ciencias Biológicas con una profundización en gestión, formulación y ejecución de proyectos de investigación 

Claudia Yolanda Reyes , Universidade Federal Da Bahia

Pós Graduação em Geologia. Docente Universidad de la Amazonía

Javier Eduardo Sánchez Ramírez , Dpto I+D DAM

Investigador. Doctorado Ingeniería Química - Universidad de Valencia

Referencias

Abad, V., Avila, R., Vicent, T., & Font, X. (2019). Promoting circular economy in the surroundings of an organic fraction of municipal solid waste anaerobic digestion treatment plant: Biogas production impact and economic factors. Bioresource Technology, 283(February), 10–17. https://doi.org/10.1016/j.biortech.2019.03.064

Adekunle, K. F., & Okolie, J. A. (2015). A Review of Biochemical Process of Anaerobic Digestion. International Journal of Environmental Research and Public Health, 15(10), 205–212. https://doi.org/10.3390/ijerph15102224

Almomani, F. (2020). Prediction of biogas production from chemically treated co-digested agricultural waste using artificial neural network. Fuel, 280(April), 118573. https://doi.org/10.1016/j.fuel.2020.118573

Alves de Oliveira, R., Komesu, A., Vaz Rossell, C. E., & Maciel Filho, R. (2018). Challenges and opportunities in lactic acid bioprocess design—From economic to production aspects. Biochemical Engineering Journal, 133, 219–239. https://doi.org/10.1016/j.bej.2018.03.003

Antoniou, N., Monlau, F., Sambusiti, C., Ficara, E., Barakat, A., & Zabaniotou, A. (2019). Contribution to Circular Economy options of mixed agricultural wastes management: Coupling anaerobic digestion with gasification for enhanced energy and material recovery. Journal of Cleaner Production, 209, 505–514. https://doi.org/10.1016/j.jclepro.2018.10.055

Arango Bedoya, O., & Sanchez Sousa, L. (2009). Tratamiento de aguas residuales de la industria láctea en sistemas anaerobios tipo uasb. Biotecnología En El Sector Agropecuario y Agroindustrial: BSAA, 7(2), 24–31.

Aryal, N., Kvist, T., Ammam, F., Pant, D., & Ottosen, L. D. M. (2018). An overview of microbial biogas enrichment. Bioresource Technology, 264(June), 359–369. https://doi.org/10.1016/j.biortech.2018.06.013

Atasoy, M., Owusu-Agyeman, I., Plaza, E., & Cetecioglu, Z. (2018). Bio-based volatile fatty acid production and recovery from waste streams: Current status and future challenges. Bioresource Technology, 268, 773–786. https://doi.org/10.1016/j.biortech.2018.07.042

Begum, S., Anupoju, G. R., Sridhar, S., Bhargava, S. K., Jegatheesan, V., & Eshtiaghi, N. (2017). Evaluation of single and two stage anaerobic digestion of landfill leachate : effect of ph and initial organic loading rate on volatile fatty acid (VFA) and biogas production. Bioresource Technology. https://doi.org/10.1016/j.biortech.2017.12.069

Bittencourt, E., Cristine, A., Rosa, D., Bianchi, A., Medeiros, P., Kaur, S., Larroche, C., & Ricardo, C. (2018). Screening and bioprospecting of anaerobic consortia for biohydrogen and volatile fatty acid production in a vinasse based medium through dark fermentation. Process Biochemistry, November 2017, 0–1. https://doi.org/10.1016/j.procbio.2018.01.012

Bonk, F., Bastidas-Oyanedel, J. R., Yousef, A. F., Schmidt, J. E., & Bonk, F. (2017). Exploring the selective lactic acid production from food waste in uncontrolled pH mixed culture fermentations using different reactor configurations. Bioresource Technology, 238, 416–424. https://doi.org/10.1016/j.biortech.2017.04.057

Bravo, M., De Brito, J., Pontes, J., & Evangelista, L. (2015). Mechanical performance of concrete made with aggregates from construction and demolition waste recycling plants. Journal of Cleaner Production, 99(2015), 59–74. https://doi.org/10.1016/j.jclepro.2015.03.012

Castillo Martinez, F. A., Balciunas, E. M., Salgado, J. M., Domínguez González, J. M., Converti, A., & Oliveira, R. P. de S. (2013). Lactic acid properties, applications and production: A review. Trends in Food Science and Technology, 30(1), 70–83. https://doi.org/10.1016/j.tifs.2012.11.007

Cerda, A., Artola, A., Font, X., Barrena, R., Gea, T., & Sánchez, A. (2018). Composting of food wastes: Status and challenges. Bioresource Technology, 248, 57–67. https://doi.org/10.1016/j.biortech.2017.06.133

Deus, R. M., Mele, F. D., Bezerra, B. S., & Battistelle, R. A. G. (2020). A municipal solid waste indicator for environmental impact: Assessment and identification of best management practices. Journal of Cleaner Production, 242, 118433. https://doi.org/10.1016/j.jclepro.2019.118433

Duan, Y., Pandey, A., Zhang, Z., Awasthi, M. K., Bhatia, S. K., & Taherzadeh, M. J. (2020). Organic solid waste biorefinery: Sustainable strategy for emerging circular bioeconomy in China. Industrial Crops and Products, 153(March), 112568. https://doi.org/10.1016/j.indcrop.2020.112568

FAO, MINENERGIA, PNUD, & GEF. (2011). Manual del Biogás. Proyecto CHI/00/G32, 120. https://doi.org/10.1073/pnas.0703993104

FNB. (2020). Estadistica de la Demanda Nacional de Alcohol Carburante (Etanol). Federación Nacional de Biocombustibles. https://www.fedebiocombustibles.com/estadistica-produccion-titulo-Alcohol_Carburante_(Etanol).htm

Fradinho, J. C., Oehmen, A., & Reis, M. A. M. (2014). Photosynthetic mixed culture polyhydroxyalkanoate (PHA) production from individual and mixed volatile fatty acids (VFAs): Substrate preferences and co-substrate uptake. Journal of Biotechnology. https://doi.org/10.1016/j.jbiotec.2014.05.035

Gao, X., Yu, Q., Li, X. S., & Yuan, Y. (2020). Assessing the modification efficiency of waste glass powder in hydraulic construction materials. Construction and Building Materials, 263. https://doi.org/10.1016/j.conbuildmat.2020.120111

Grima, N., & Singh, S. J. (2020). The self-(in)sufficiency of the Caribbean: Ecosystem services potential Index (ESPI) as a measure for sustainability. Ecosystem Services, 42(February), 101087. https://doi.org/10.1016/j.ecoser.2020.101087

Grupo Bancolombia. (2020). Informe especial: el petróleo está en una coyuntura sin precedentes. https://www.grupobancolombia.com/wps/portal/empresas/capital-inteligente/actualidad-economica-sectorial/sector-petroleo/petroleo-esta-en-coyuntura-sin-precedentes-por-crisis-mundial#:~:text=Por su parte%2C la producción de gas natural de Colombia,alta des

Gu, T., Yin, C., Ma, W., & Chen, G. (2019). Municipal solid waste incineration in a packed bed: A comprehensive modeling study with experimental validation. Applied Energy, 247(January), 127–139. https://doi.org/10.1016/j.apenergy.2019.04.014

Gu, X. Y., Liu, J. Z., & Wong, J. W. C. (2018). Control of lactic acid production during hydrolysis and acidogenesis of food waste. Bioresource Technology, 247(September), 711–715. https://doi.org/10.1016/j.biortech.2017.09.166

Işıldar, A., van Hullebusch, E. D., Lenz, M., Du Laing, G., Marra, A., Cesaro, A., Panda, S., Akcil, A., Kucuker, M. A., & Kuchta, K. (2019). Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE) – A review. Journal of Hazardous Materials, 362(January 2018), 467–481. https://doi.org/10.1016/j.jhazmat.2018.08.050

Karouach, F., Bakraoui, M., El Gnaoui, Y., Lahboubi, N., & El Bari, H. (2020). Effect of combined mechanical–ultrasonic pretreatment on mesophilic anaerobic digestion of household organic waste fraction in Morocco. Energy Reports, 6, 310–314. https://doi.org/10.1016/j.egyr.2019.11.081

Khalil, M., Berawi, M. A., Heryanto, R., & Rizalie, A. (2019). Waste to energy technology: The potential of sustainable biogas production from animal waste in Indonesia. Renewable and Sustainable Energy Reviews, 105(February), 323–331. https://doi.org/10.1016/j.rser.2019.02.011

Kummamuru, B. (2017). WBA Global Bioenergy Statistics 2017. World Bioenergy Association, 80. https://doi.org/10.1016/0165-232X(80)90063-4

Lalak, J., Kasprzycka, A., Martyniak, D., & Tys, J. (2016). Effect of biological pretreatment of Agropyron elongatum “BAMAR” on biogas production by anaerobic digestion. Bioresource Technology, 200, 194–200. https://doi.org/10.1016/j.biortech.2015.10.022

Li, K., Liu, R., & Sun, C. (2015). Bioresource Technology Comparison of anaerobic digestion characteristics and kinetics of four livestock manures with different substrate concentrations. Bioresource Technology, 198, 133–140. https://doi.org/10.1016/j.biortech.2015.08.151

Li, K., Liu, R., & Sun, C. (2016). A review of methane production from agricultural residues in China. Renewable and Sustainable Energy Reviews, 54, 857–865. https://doi.org/10.1016/j.rser.2015.10.103

Liu, Z., Zhang, C., Lu, Y., Wu, X., Wang, L., Wang, L., Han, B., & Xing, X. H. (2013). States and challenges for high-value biohythane production from waste biomass by dark fermentation technology. Bioresource Technology, 135, 292–303. https://doi.org/10.1016/j.biortech.2012.10.027

Lord, D., Hernandez, R., Todd, W., Zappi, M., Revellame, E., Holmes, W., & Mondala, A. (2016). Extent of inhibition and utilization of volatile fatty acids as carbon sources for activated sludge microbial consortia dedicated for biodiesel production. Renewable Energy, 96, 11–19. https://doi.org/10.1016/j.renene.2016.04.068

Maldonado, R., Acosta, B., Osorio, J., Soto, D., & Zeppieri, S. (2014). Selection and design of a scheme of CH4-C02 seperation of a biogas stream. Revista de La Facultad de Ingenieria, 29(1), 115–126.

Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F., & Erasmi, S. (2016). Greenhouse gas emissions from soils—A review. Chemie Der Erde, 76(3), 327–352. https://doi.org/10.1016/j.chemer.2016.04.002

Ongondo, F. O., Williams, I. D., & Cherrett, T. J. (2011). How are WEEE doing? A global review of the management of electrical and electronic wastes. Waste Management, 31(4), 714–730. https://doi.org/10.1016/j.wasman.2010.10.023

Paes, L. A. B., Bezerra, B. S., Deus, R. M., Jugend, D., & Battistelle, R. A. G. (2019). Organic solid waste management in a circular economy perspective – A systematic review and SWOT analysis. Journal of Cleaner Production, 239, 118086. https://doi.org/10.1016/j.jclepro.2019.118086

Parra Huertas, R. A. (2015). Anaerobic digestión: biotechnological mechanisms in waste water treatments and their application in food industry. Producción + Limpia, 10(2), 142–159. http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S1909-04552015000200014

Phanthumchinda, N., Thitiprasert, S., Tanasupawat, S., Assabumrungrat, S., & Thongchul, N. (2018). Process and cost modeling of lactic acid recovery from fermentation broths by membrane-based process. Process Biochemistry, 68, 205–213. https://doi.org/10.1016/j.procbio.2018.02.013

Probst, M., Walde, J., Pümpel, T., Wagner, A. O., & Insam, H. (2015). A closed loop for municipal organic solid waste by lactic acid fermentation. Bioresource Technology, 175, 142–151. https://doi.org/10.1016/j.biortech.2014.10.034

Rama, M., Cort, A., García-guaita, F., & Gonz, S. (2019). Embedding environmental , economic and social indicators in the evaluation of the sustainability of the municipalities of Galicia ( northwest of Spain ). 234. https://doi.org/10.1016/j.jclepro.2019.06.158

Ramírez Jaime, A. (2013). Membranas compuestas base polimérica: preparación, caracterización y estudios para la separación de gases. 114.

Ramos, D. (2011). Analisis del concepto de residuos solidos domiciliarios de Torreón Coahuila. Tesis de Pregrado, 11(2), 10–14. https://doi.org/10.16194/j.cnki.31-1059/g4.2011.07.016

Ravindran, B., & Sekaran, G. (2010). Bacterial composting of animal fleshing generated from tannery industries. Waste Management, 30(12), 2622–2630. https://doi.org/10.1016/j.wasman.2010.07.013

Ren, N., Guo, W., Liu, B., Cao, G., & Ding, J. (2011). Biological hydrogen production by dark fermentation : challenges and prospects towards scaled-up production. Current Opinion in Biotechnology, 22, 365–370. https://doi.org/10.1016/j.copbio.2011.04.022

Rusmanis, D., Shea, R. O., Wall, D. M., Murphy, J. D., Rusmanis, D., Shea, R. O., Wall, D. M., Murphy, J. D., & Rusmanis, D. (2019). Biological hydrogen methanation systems – an overview of design and efficiency efficiency. Bioengineered, 10(1), 604–634. https://doi.org/10.1080/21655979.2019.1684607

Sahito, A. R., & Mahar, R. B. (2014). Enhancing methane production from rice straw co-digested with buffalo dung by optimizing effect of substrate ratio, alkaline doze and particle size. Journal of Animal and Plant Sciences, 24(4), 1076–1084.

Sarsaiya, S., Jain, A., Kumar, S., & Duan, Y. (2019). Bioresource Technology Microbial dynamics for lignocellulosic waste bioconversion and its importance with modern circular economy , challenges and future perspectives. Bioresource Technology, 291(June), 121905. https://doi.org/10.1016/j.biortech.2019.121905

Soobhany, N. (2019). Insight into the recovery of nutrients from organic solid waste through biochemical conversion processes for fertilizer production: A review. Journal of Cleaner Production, 241, 118413. https://doi.org/10.1016/j.jclepro.2019.118413

Thiriet, P., Bioteau, T., & Tremier, A. (2020). Optimization method to construct micro-anaerobic digesters networks for decentralized biowaste treatment in urban and peri-urban areas. Journal of Cleaner Production, 243. https://doi.org/10.1016/j.jclepro.2019.118478

Trad, Z., Akimbomi, J., Vial, C., Larroche, C., Taherzadeh, M. J., & Fontaine, J. P. (2015). Development of a submerged anaerobic membrane bioreactor for concurrent extraction of volatile fatty acids and biohydrogen production. Bioresource Technology, 196, 290–300. https://doi.org/10.1016/j.biortech.2015.07.095

Tyagi, V. K., Fdez-Güelfo, L. A., Zhou, Y., Álvarez-Gallego, C. J., Garcia, L. I. R., & Ng, W. J. (2018). Anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW): Progress and challenges. Renewable and Sustainable Energy Reviews, 93(April), 380–399. https://doi.org/10.1016/j.rser.2018.05.051

Varnero, M. T., Carú, M., Galleguillos, K., & Achondo, P. (2012). Tecnologías disponibles para la purificación de biogás usado en la generación eléctrica. Informacion Tecnologica, 23(2), 31–40. https://doi.org/10.4067/S0718-07642012000200005

Wainaina, S., Awasthi, M. K., Sarsaiya, S., Chen, H., Singh, E., Kumar, A., Ravindran, B., Awasthi, S. K., Liu, T., Duan, Y., Kumar, S., Zhang, Z., & Taherzadeh, M. J. (2020). Resource recovery and circular economy from organic solid waste using aerobic and anaerobic digestion technologies. Bioresource Technology, 301, 122778. https://doi.org/10.1016/j.biortech.2020.122778

Wainaina, S., Lukitawesa, Kumar Awasthi, M., & Taherzadeh, M. J. (2019). Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: A critical review. Bioengineered, 10(1), 437–458. https://doi.org/10.1080/21655979.2019.1673937

Wang, J., & Wan, W. (2008). Effect of temperature on fermentative hydrogen production by mixed cultures. International Journal of Hydrogen Energy, 33(20), 5392–5397. https://doi.org/10.1016/j.ijhydene.2008.07.010

Wang, J., & Wan, W. (2009). Factors influencing fermentative hydrogen production: A review. International Journal of Hydrogen Energy, 34(2), 799–811. https://doi.org/10.1016/j.ijhydene.2008.11.015

Yen, H. W., Li, R. J., & Ma, T. W. (2011). The development process for a continuous acetone-butanol-ethanol (ABE) fermentation by immobilized Clostridium acetobutylicum. Journal of the Taiwan Institute of Chemical Engineers, 42(6), 902–907. https://doi.org/10.1016/j.jtice.2011.05.006

Yentekakis, I. V., & Goula, G. (2017). Biogas management: Advanced utilization for production of renewable energy and added-value chemicals. Frontiers in Environmental Science, 5(FEB). https://doi.org/10.3389/fenvs.2017.00007

Yu, L., Wang, H., Wang, G., Song, W., Huang, Y., Li, S. G., Liang, N., Tang, Y., & He, J. S. (2013). A comparison of methane emission measurements using eddy covariance and manual and automated chamber-based techniques in Tibetan Plateau alpine wetland. Environmental Pollution, 181, 81–90. https://doi.org/10.1016/j.envpol.2013.06.018

Zhang, F., Chen, Y., Dai, K., Shen, N., & Zeng, R. J. (2015). The glucose metabolic distribution in thermophilic (55 °c) mixed culture fermentation: A chemostat study. International Journal of Hydrogen Energy, 40(2), 919–926. https://doi.org/10.1016/j.ijhydene.2014.11.098

Zhang, L., Loh, K. C., & Zhang, J. (2019). Enhanced biogas production from anaerobic digestion of solid organic wastes: Current status and prospects. In Bioresource Technology Reports (Vol. 5). Elsevier Ltd. https://doi.org/10.1016/j.biteb.2018.07.005

Zhang, S., Guo, H., Du, L., Liang, J., Lu, X., Li, N., & Zhang, K. (2015). Influence of NaOH and thermal pretreatment on dewatered activated sludge solubilisation and subsequent anaerobic digestion: Focused on high-solid state. Bioresource Technology, 185, 171–177. https://doi.org/10.1016/j.biortech.2015.02.050

Zheng, X., Chen, Y., Wang, X., & Wu, J. (2017). Using mixed sludge-derived short-chain fatty acids enhances power generation of microbial fuel cells. Energy Procedia, 105, 1282–1288. https://doi.org/10.1016/j.egypro.2017.03.458

Zhou, M., Yan, B., Wong, J. W. C., & Zhang, Y. (2018). Enhanced volatile fatty acids production from anaerobic fermentation of food waste: A mini-review focusing on acidogenic metabolic pathways. Bioresource Technology, 248, 68–78. https://doi.org/10.1016/j.biortech.2017.06.121

Sistema OJS - Metabiblioteca |