Funcionalidades de la minería de datos

##plugins.themes.bootstrap3.article.main##

Ferley Medina Rojas Universidad Cooperativa de Colombia
Cristina Gomez Universidad Pontificia Bolivariana sede Medellín
Resumen

En este documento se ha revisado una metodología y los algoritmos utilizados para abordar un problema de predicción o clúster de datos de acuerdo a la información solicitada. La minería de datos emerge de las áreas de base de datos (data base), repositorio de datos (Data Warehouse) y de las grandes bases de datos (big Data), como un proceso de extracción de información fundamentado en la matemáticas y la estadística. Siendo necesario realizar la selección del modelo, la exploración de los datos, la clasificación de datos, la predicción de valores en función de los datos, el modelamiento de las dependencias para resolver el problema, el descubrimiento de nuevas reglas y visualizar los resultados, con lo que se realiza el análisis e interpretación de la información obtenida.

Es así, como algunas de las aplicaciones de la minería de datos son: en la educación, en la multimedia, en el comercio, en el sector financiero, en la medicina, en el sector agropecuario, en las ciencias sociales, en la gestión gubernamental, y en la tecnología. Para realizar el proceso de extracción de los datos solicitados de estas aplicaciones se requiere el uso de algunos algoritmos como los de regresión lineal, y logística, redes bayesianas, bayesnaive, árboles y reglas de decisión, lógica e inferencia difusa y redes neuronales.

Palabras clave

Descargas

Los datos de descargas todavía no están disponibles.

##plugins.themes.bootstrap3.article.details##

Biografía del autor/a / Ver

Ferley Medina Rojas, Universidad Cooperativa de Colombia

Msc, Telemática. Estudiante Doctorado en Ingeniería.

Cristina Gomez, Universidad Pontificia Bolivariana sede Medellín

PhD. Ingeniería. Área Telecomunicaciones.
Referencias

Arabí, U., 2013. Ethical data mining and social Science data exploration and descriptcion: scope and limitations in social Science research. In: Ethical data mining applications for socio-economic development. United States of america: Idea Group Inc (IGI), pp. 22-39.

Barros, R. C., Basgalupp, M. P., Carvalho, A. C. R L. F. d. & Freitas, A. A., 2012. A Survey of Evolutionary Algorithms for Decision-Tree Induction. Systems, Man, and Cybemetics, Part C: Applications and Reviews, IEEE Transactions on V42 Issue 3 , pp. 291-312.

Bauckhage, C. a. K. K., 2013. Data Mining and Pattem Recognition in Agriculture V 27 No. 4. KI - Kunstliche Intelligenz, pp. 313-324.

Chikalov, I., Moshkov, M. & Zielosko, B., 2011. Online Leaming Algorithm for Ensemble of Decisión Rules. Rough Sets, Fuzzy Sets, Data Mining and Granular Computing V 6743, pp. 310-313.

Diaz, D. B. & Morillas, R. A., 2004. Minería de datos y lógica difusa. Una aplicación al estudio de la rentabilidad económica de las empresas agroalimentarias en Andalucía. Estadística Española Vol 46, Núm. 157, pp. 409-430.

Díaz, J. L. A. & Pérez, G. R., 2004. Estado del arte en la utilización de técnicas avanzadas para la búsqueda de información no trivial a partir de datos en los sistemas de abastecimientos de agua potable. Universidad Politécnica de Valencia. Departamento de ingeniria hidráulica y medio abte. [Online] Available at: http://www.lenhs.ct.ufpb.br/html/downloads/serea/trabalhos/Al 5 1 5.pdf

Fernández, J. et al., 2011. Indexación y recuperación de información multimedia. La plata Buenos aires, Universidad Michoacana de San Nicolás de Hidalgo, pp. 324-328.

Gorbea, P. S., 2013. Tendencias transdisciplinarias en los estudios métricos de la información y su relación con la gestión de la información y del conocimiento. Perspectivas em Gestao & Conhecimento V. 3, N 1, pp. 13-27.

Grian, g. & Tina, E. r., 2010. Leveraging label independent Features for classification in sparsely labeled networks: an emprical study. In: Advances in social network mining and analysis. Pennsylvania: Springer Verlag Heidelberg, pp. 1 -19.

Hajian, S. & Domingo, F. J., 2013. AMethodology for Direct and Indirect Discrimination Prevention in Data Mining. IEEE Transactions on Knowledge and Data Enginneering Vol25No. 7,pp. 1445-1459.

Hullermeier, E., 2011. Fuzzy sets in machine leaming and data mining. Applied Soft Computing V i l No. 2,pp. 1493-1505.

JianPing, G., 2012. The research on model of group behavior based on mobile network mining and highspeed data streams. Emerging computación and information technologies for education V 146, pp. 473-480.

Kantardzic, M., 2011. Data mining conceptos, models methods, and algorithms secend edition. New Jersey: John Wiley & Sons, Inc.

Londhe, S. R., Mahajan, R. A. & Bhoyar, B. j., 2013. Survey on Mining High Utility Itemset Transactional Database. International Journal of Innovative Research & Development Vol 2 Issue 13, pp. 43-47.

M.Parimala, López, D. & Senthilkumar, N., 2011. A Survey on Density Based Clustering Algorithms for Mining Large. International Journal of Advanced Science and Technology V 31, pp. 59-66.

Microsoft, 2012. msdn.microsoft.com. [Online] Available at: msdn.microsoft.com/es-es/library/msl74949.aspx [AccessedOl 102013]

Mishra, P., Pandhy, N. & Panigrahi, R., 2012. The Survey of Data Mining Applications and Feature Scope. Asian Journal of Computer Science and Information Technology 2:4, pp. 68-77.

Mylonakis, J., 2010. Evaluating the likelihood of using linear discriminant analysis as a commercial bank card owners credit scoring model. International Business Research, V 3, No. 2 April 2010, pp. 9-20.

Nebot, V. & Berlanga, R., 2012. Finding association rules in semantic web data. Knowledge-Based Systems V 25, pp. 51 -62.

Padhy, N., Mishra, P. & Panigrah, R., 2012. The Survey of Data Mining Applications. International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.3, June 2012, pp. 43-58.

Peña, A. A., 2014. Educational Data Minining: A Survey and a Data Mining-Based Analysis of recent Works. Expert Systems with Applications, pp. 1432- 1462.

Ranchi, J. & Jaunpur, U. P., 2013. Data Mining Approach to Detect Heart. International Journal of Advanced Computer Science and information Techonology V2No. 4, pp. 56-66.

Riquelme, J. C., Ruiz, R. & Gilbert, K., 2006. Minería de datos: Conceptos y Tendencias. Revista Iberoamericana de Inteligencia Vol. 10No29,pp.ll-18.

Romero, C. & Ventura, S., 2010. Educational Data Mining: A Review of the. Transactions on Systems, Man, and Cybemetics—Part C: Applications and Reviews V 40 No. 6, pp. 601 -618.

Romero, M. C., Ventura, S. S. & Hervás, M. C., 2005. Estado actual de la aplicación de la minería de datos a los sistemas de enseñanza basada en WEB. Madrid, Universidad de Cordoba, pp. 49-56.

Rutkowski, L., Jaworski, M., Pietruczuk, L. & Duda, P., 2014. Decisión Trees for Mining Data Streams Based on the Gaussian Approximation. Knowledge and Data Engineering, IEEE Transactions on, vol.26, no.l,pp. 108-119.

Salvo, R. D. et al., 2013. Multivariate time series clustering on geophysical data recorded at Mt. Etna from 1996 to 2003. Journal of Volcanology and Geothermal Research, Volume 251, pp. 65-74.

Swiderski, B., Kurek, J. & Osowski, S., 2012. Multistage classification by using logistic regression and neural networks for assessment of financial condition of company. Decisión Support Systems V 52, pp. 538-547.

Tari, L. et al., 2010. Discovering drug-drug interactions: a text-mining and reasoning approach based on properties of drug metabolism. Bioinformatics, Vol 26 ,pp. 547-553.

Vidaurre, D., Bielza, C. & Larranaga, P., 20013. ANL1 -REGULARIZED NA'IVE BAYES-INSPIRED. International Journal on Artificial Intelligence Tools V22No4,pp. 1350019-1 1350019-18.

Westreich, D., Lessler, J. & Funk, M. J., 2010. Propensity score estimation: neural networks, support vector machines, decisión trees (CART), and metaclassifiers as altematives to logistic regression ". Journal of Clinical Epidemiology V 63 No. 8, pp. 826-833.

Witten, L. H., Frank, E. & Hall, M. A., 2011. Data mining practical machine leaming tools and techniques, Third edition. Estados Unidos: Morgan Kaufmann Publications.

Xiong, W., Cao, Y. & Liu, H., 2013. Study ofBayesian Network Structure Leaming. Applied Mathematics & Information Sciences V 7 No. 1L, pp. 49-54.

Zorrilla, M. & Garzia, S. D., 2013. A Service Oriented Architecture to Provide Data Mininig Services for Non-expert Data Miner. Decisión Support Systems Vol. 55, issue 1, pp. 399-411.

Sistema OJS - Metabiblioteca |