Features of data mining
##plugins.themes.bootstrap3.article.main##
Downloads
##plugins.themes.bootstrap3.article.details##
Arabí, U., 2013. Ethical data mining and social Science data exploration and descriptcion: scope and limitations in social Science research. In: Ethical data mining applications for socio-economic development. United States of america: Idea Group Inc (IGI), pp. 22-39.
Barros, R. C., Basgalupp, M. P., Carvalho, A. C. R L. F. d. & Freitas, A. A., 2012. A Survey of Evolutionary Algorithms for Decision-Tree Induction. Systems, Man, and Cybemetics, Part C: Applications and Reviews, IEEE Transactions on V42 Issue 3 , pp. 291-312.
Bauckhage, C. a. K. K., 2013. Data Mining and Pattem Recognition in Agriculture V 27 No. 4. KI - Kunstliche Intelligenz, pp. 313-324.
Chikalov, I., Moshkov, M. & Zielosko, B., 2011. Online Leaming Algorithm for Ensemble of Decisión Rules. Rough Sets, Fuzzy Sets, Data Mining and Granular Computing V 6743, pp. 310-313.
Diaz, D. B. & Morillas, R. A., 2004. Minería de datos y lógica difusa. Una aplicación al estudio de la rentabilidad económica de las empresas agroalimentarias en Andalucía. Estadística Española Vol 46, Núm. 157, pp. 409-430.
Díaz, J. L. A. & Pérez, G. R., 2004. Estado del arte en la utilización de técnicas avanzadas para la búsqueda de información no trivial a partir de datos en los sistemas de abastecimientos de agua potable. Universidad Politécnica de Valencia. Departamento de ingeniria hidráulica y medio abte. [Online] Available at: http://www.lenhs.ct.ufpb.br/html/downloads/serea/trabalhos/Al 5 1 5.pdf
Fernández, J. et al., 2011. Indexación y recuperación de información multimedia. La plata Buenos aires, Universidad Michoacana de San Nicolás de Hidalgo, pp. 324-328.
Gorbea, P. S., 2013. Tendencias transdisciplinarias en los estudios métricos de la información y su relación con la gestión de la información y del conocimiento. Perspectivas em Gestao & Conhecimento V. 3, N 1, pp. 13-27.
Grian, g. & Tina, E. r., 2010. Leveraging label independent Features for classification in sparsely labeled networks: an emprical study. In: Advances in social network mining and analysis. Pennsylvania: Springer Verlag Heidelberg, pp. 1 -19.
Hajian, S. & Domingo, F. J., 2013. AMethodology for Direct and Indirect Discrimination Prevention in Data Mining. IEEE Transactions on Knowledge and Data Enginneering Vol25No. 7,pp. 1445-1459.
Hullermeier, E., 2011. Fuzzy sets in machine leaming and data mining. Applied Soft Computing V i l No. 2,pp. 1493-1505.
JianPing, G., 2012. The research on model of group behavior based on mobile network mining and highspeed data streams. Emerging computación and information technologies for education V 146, pp. 473-480.
Kantardzic, M., 2011. Data mining conceptos, models methods, and algorithms secend edition. New Jersey: John Wiley & Sons, Inc.
Londhe, S. R., Mahajan, R. A. & Bhoyar, B. j., 2013. Survey on Mining High Utility Itemset Transactional Database. International Journal of Innovative Research & Development Vol 2 Issue 13, pp. 43-47.
M.Parimala, López, D. & Senthilkumar, N., 2011. A Survey on Density Based Clustering Algorithms for Mining Large. International Journal of Advanced Science and Technology V 31, pp. 59-66.
Microsoft, 2012. msdn.microsoft.com. [Online] Available at: msdn.microsoft.com/es-es/library/msl74949.aspx [AccessedOl 102013]
Mishra, P., Pandhy, N. & Panigrahi, R., 2012. The Survey of Data Mining Applications and Feature Scope. Asian Journal of Computer Science and Information Technology 2:4, pp. 68-77.
Mylonakis, J., 2010. Evaluating the likelihood of using linear discriminant analysis as a commercial bank card owners credit scoring model. International Business Research, V 3, No. 2 April 2010, pp. 9-20.
Nebot, V. & Berlanga, R., 2012. Finding association rules in semantic web data. Knowledge-Based Systems V 25, pp. 51 -62.
Padhy, N., Mishra, P. & Panigrah, R., 2012. The Survey of Data Mining Applications. International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.3, June 2012, pp. 43-58.
Peña, A. A., 2014. Educational Data Minining: A Survey and a Data Mining-Based Analysis of recent Works. Expert Systems with Applications, pp. 1432- 1462.
Ranchi, J. & Jaunpur, U. P., 2013. Data Mining Approach to Detect Heart. International Journal of Advanced Computer Science and information Techonology V2No. 4, pp. 56-66.
Riquelme, J. C., Ruiz, R. & Gilbert, K., 2006. Minería de datos: Conceptos y Tendencias. Revista Iberoamericana de Inteligencia Vol. 10No29,pp.ll-18.
Romero, C. & Ventura, S., 2010. Educational Data Mining: A Review of the. Transactions on Systems, Man, and Cybemetics—Part C: Applications and Reviews V 40 No. 6, pp. 601 -618.
Romero, M. C., Ventura, S. S. & Hervás, M. C., 2005. Estado actual de la aplicación de la minería de datos a los sistemas de enseñanza basada en WEB. Madrid, Universidad de Cordoba, pp. 49-56.
Rutkowski, L., Jaworski, M., Pietruczuk, L. & Duda, P., 2014. Decisión Trees for Mining Data Streams Based on the Gaussian Approximation. Knowledge and Data Engineering, IEEE Transactions on, vol.26, no.l,pp. 108-119.
Salvo, R. D. et al., 2013. Multivariate time series clustering on geophysical data recorded at Mt. Etna from 1996 to 2003. Journal of Volcanology and Geothermal Research, Volume 251, pp. 65-74.
Swiderski, B., Kurek, J. & Osowski, S., 2012. Multistage classification by using logistic regression and neural networks for assessment of financial condition of company. Decisión Support Systems V 52, pp. 538-547.
Tari, L. et al., 2010. Discovering drug-drug interactions: a text-mining and reasoning approach based on properties of drug metabolism. Bioinformatics, Vol 26 ,pp. 547-553.
Vidaurre, D., Bielza, C. & Larranaga, P., 20013. ANL1 -REGULARIZED NA'IVE BAYES-INSPIRED. International Journal on Artificial Intelligence Tools V22No4,pp. 1350019-1 1350019-18.
Westreich, D., Lessler, J. & Funk, M. J., 2010. Propensity score estimation: neural networks, support vector machines, decisión trees (CART), and metaclassifiers as altematives to logistic regression ". Journal of Clinical Epidemiology V 63 No. 8, pp. 826-833.
Witten, L. H., Frank, E. & Hall, M. A., 2011. Data mining practical machine leaming tools and techniques, Third edition. Estados Unidos: Morgan Kaufmann Publications.
Xiong, W., Cao, Y. & Liu, H., 2013. Study ofBayesian Network Structure Leaming. Applied Mathematics & Information Sciences V 7 No. 1L, pp. 49-54.
Zorrilla, M. & Garzia, S. D., 2013. A Service Oriented Architecture to Provide Data Mininig Services for Non-expert Data Miner. Decisión Support Systems Vol. 55, issue 1, pp. 399-411.