Methodology Proposal for Carbon Footprint Dynamic Modeling at Sugarcane Crops Field Labors

##plugins.themes.bootstrap3.article.main##

Andrés López Astudillo Icesi University
Lina Marcela Rodríguez Icesi University
Claudia Lubo Icesi University
Fernando Arenas Icesi University
Beatriz Sierra Icesi University
Abstract
Agriculture contributes to Climate Change by emitting into the atmosphere approximately 13.5% of emissions of greenhouse gases (GHGs) generated by anthropogenic activities. This situation comes as a result of both mechanical farming - responsible of the carbon dioxide emissions and the decomposition of fertilizers, herbicides and ripening accelerators applied to the crop - primary responsible for nitrous oxide emissions -. The agricultural sector is also affected directly by climate change effects, which is reflected in weather events such as storms, floods and droughts, shortening the plant growth period and crop yields. This article describes the methodology identified in the project with the purpose on modeling the carbon footprint generated during land preparation and the sugar cane crop increase from the sight of system dynamics, which represents a basis for the formulation of even more complex simulation models in order to assess the GHG emissions behavior in the short and long term. The given methodology implies a guide for external projects execution and carries a significant potential to address future phases since the current applied research on the sugar cane sector.
Keywords

Downloads

Download data is not yet available.

##plugins.themes.bootstrap3.article.details##

Author Biographies / See

Andrés López Astudillo, Icesi University

Universidad Icesi, Santiago de Cali, PhD(c)

Lina Marcela Rodríguez, Icesi University

Universidad Icesi, Santiago de Cali, 

Claudia Lubo, Icesi University

Universidad Icesi, Santiago de Cali, , MsC(c)

Fernando Arenas, Icesi University

Universidad Icesi, Santiago de Cali, PhD(c)

Beatriz Sierra, Icesi University

Universidad Icesi, Santiago de Cali,
References

Bramley, R. G. V. (2009). Lessons from nearly 20 years of Precision Agriculture research, development, and adoption as a guide to its appropriate application. Crop and Pasture Science, 60(3), 197. http://doi.org/10.1071/CP08304

Carbonell, J. A., Quintero, R., Stember, J., Osorio, C. A., Isaacs, C., & Victoria, J. I. (2011). Zonificación Agroecológica para el Cultivo de Caña de Azúcar en el Valle del río Cauca (tercera aproximación). Cali.

Concha, A. M., & Rojas, J. L. (2011). Diseño de Experimento para el cálculo teórico de emisiones de CO2 generadas por cuatro tipos de preparación del suelo para un cultivo de caña de azúcar. Universidad Icesi.

Conway, G. R., & Barbie, E. B. (1988). After the Green Revolution. Futures, 20(6), 651–670. http://doi.org/10.1016/0016-3287(88)90006-7

De Klein, C., Novoa, R., Ogle, S., Smith, K., Rochette, P., & Wirth, T. (2006). Capítulo 11: Emisiones de N2O de los suelos gestionados y emisiones de CO2 derivadas de la aplicación de Cal y Urea. In Directrices del IPCC de 2006 para los inventarios nacionales de gases de efecto invernadero (pp. 11.1–11.56 Vol. 4). Hayama, Japón: IGES.

Forrester, J. W. (1961). Industrial dynamics. (MIT, Ed.). Cambridge, MA.

Gómez, D., & Watterson, J. (2006). Capítulo 2: Combustión Estacionaria. In Directrices del IPCC de 2006 para los inventarios nacionales de gases de efecto invernadero (Vol. 2, pp. 2.1–2.47). Hayama, Japón.

González, O., & Guerra, A. (2015). La Huella de Carbono del Azúcar de Guatemala, Zafra 2013-2014. Revista Atagua.

Grisso, R., Alley, M., McClellan, P., Brann, D., & Donohue, S. (2009). Precision Farming. A Comprehensive Approach. Virginia Cooperative Extension, 442–500.

ITC. (2012). Normas de la huella de carbono de productos agrícolas. Ginebra, Suiza.

Liévano, F., & Londoño, J. E. (2012). El pensamiento sistémico como herramienta metodológica para la resolución de problemas. Revista Soluciones de Postgrado EIA, 4(8), 43–65.

López, A., Rodríguez, L. M., Lubo, C. M., Arenas, F. A., & Sierra, B. E. (2014). Evaluating Carbon Footprint Behavior in the Agriculture and Energy Sectors?: A Review. Sistemas & Telemática, 12, 35–53.https://doi.org/10.18046/syt.v12i31.1914

Mclaughlin, M., Tiller, K., Naidu, R., & Stevens, D. (1996). Review: the behaviour and environmental impact of contaminants in fertilizers. Australian Journal of Soil Research, 34(1), 1. http://doi.org/ 10.1071/SR9960001

Rapal Uruguay. (2010). Impactos del modelo de agricultura industrial. Contaminación y eutrofización del agua. Montevideo, Uruguay.

Sterman, J. D. (2000). Business dynamics: systems thinking and modeling for a complex world (Irwin/McGr). Boston, MA.

Waldron, C., Harnisch, J., Lucon, O., Mckibbon, R., Saile, S., Wagner, F., & Walsh, M. (2006). Capítulo 3: Combustión móvil. In Directrices del IPCC de 2006 para los inventarios nacionales de gases de efecto invernadero (pp. 3.1–3.78 Vol. 2). Hayama, Japón: IGES.

Zoratto, A. C. (2006). Main Impacts of Sugar Cane. Virtual Pro.

OJS System - Metabiblioteca |