Bifurcations of neuronal networks systems

##plugins.themes.bootstrap3.article.main##

Mauro Montealegre Cardenas Surcolombiana University
Jasmidt Vera Cuenca Surcolombiana University
Edgar Montealegre Cárdenas Surcolombiana University
Abstract
This paper explores the concepts of dynamic systems that explain synergies in biological neural networks modeled with the Morris-Lecar equation, assuming that neurons or groups of neurons are oscillators, or not, at the cellular, neuronal synapses or network connectivity. For the fast-time subsystems, unique solutions and "Burstings" solutions are identified. In this dynamic system of hierarchical complexity, the parameters are the variables of the slow subsystem. In order to explain instability and transience, the generic bifurcation theory that characterizes mesoscopic aspects of network and phylogenetic connectivity over typical behavioral changes is used. This study is extended to models of recurrent artificial neural networks, in particular to the Hopfield model.
Keywords

Downloads

Download data is not yet available.

##plugins.themes.bootstrap3.article.details##

Author Biographies / See

Mauro Montealegre Cardenas, Surcolombiana University

Research Group Dinusco

Jasmidt Vera Cuenca, Surcolombiana University

Research Group Dinusco

Edgar Montealegre Cárdenas, Surcolombiana University

Research Group Dinusco
References

Bard Ermentrout, G., & Terman, D. H. (2012). Mathematical Fundations of Neuroscience. New York: Springer.

Brown, E., Mahetius, J., & Holmes, P. (2004). On the phase reductions an response dynamics of Neural oscillators populations. Neural Computing 16, 673-715. https://doi.org/10.1162/089976604322860668

Cohen-Grossberg. (1983). Absoluty stability global pattern formation and parallel memory storage by competitive (Vols. SMC-13).

Erdi, P. (2010). Complexity Explained. Springer.

Ermentrout, G., & Terman, D. (2012). Mathematical Fundations of Neuroscience. New York: Springer.

Geovearts, B. H. (2013). MatCont tutorial on starting up homoclinic orbits. California University .

Hastings, S. P. (1976). On the existence of homoclinic and periodic orbits for the FitzHung Nagumo equations. Quart J. Math 27, 123-154. https://doi.org/10.1093/qmath/27.1.123

Hopfield, J. (1984). Neurons of graded response have collective computational properties like those of two-state neurons. Proc Natl Acad Sci U S A, 18, 3088-3092. https://doi.org/10.1073/pnas.81.10.3088

Izhikevich, E. M. (2007). Systems in Neuroscience: Geometry of excitability and Bursting. Cambridge: MIT Cambridge.

Kuznetsov, Y. A. (2004). Elements of applied Bifurcations Theory. New York: Springer. https://doi.org/10.1007/978-1-4757-3978-7

Montealegre Cardenas , M., Londoño Betancourth, G., & Polania Quiza, L. A. (2012). Fundamentos de los Sistemas Dinámicos. Neiva: Universidad Surcolombiana.

Montealegre, Montealegre Cardenas, M., Vera cuenca , J., & Montealegre Cardenas, E. (2015). Interacciones significativas entre los sistemas dinámicos del modelo de oscilaciones neuronales

de Morris-Lecar y sistemas dinámicos de redes neuronales artificiales. Neiva: Proyecto Universidad Surcolombiana.

Siri, B. a. (2007). A matthematical analysis of the effects of Hebbien Learning rules on the dynamics and structure of discrete-time random recurrent neural network. Nice: Institut Non Linéaire de Nice.

Venturelli, A. (2015). Consideraciones Epistemológicas alrededor de las neurociencias cognitivas. Ciencias y cognición, 20(1), 018-28.

OJS System - Metabiblioteca |