The Vision of Nanotechnology for the Radiocommunications in the coming years. A perspective from the Academy.

La visión de la nanotecnología para las radiocomunicaciones en los próximos años. Una perspectiva desde la academia

##plugins.themes.bootstrap3.article.main##

Andrés García
Leonardo Betancur
Abstract
In recent years, nanotechnology has marked a milestone in the communications evolution, which has allowed the development of new applications and standardization of new materials to a nanometer scale called nanomaterials. Some of them are the graphene and its derivatives as carbon nanotubes and some compounds as the metamaterials whose properties and characteristics of electronic and physical type are fully compatible, allowing easy merging with telecommunications. And it is precisely what is intended by this article: provide a perspective from the academy to identify some kinds of nanomaterials and we resolve some questions like ¿what kind of materials are? ¿what properties do it have? ¿what classification has it? ¿what are some of the most important applications in the field of telecommunications? and ¿what developments are there currently. Thus, we enter exploring the nanocommunications.
Keywords

Downloads

Download data is not yet available.

##plugins.themes.bootstrap3.article.details##

References

E. Abad et al., NanoDictionary. Basel: Collegium Basilea (2005) ISBN 10: 3952318108

Foresight Institute – Advancing beneficial nanotechnology. http://www.foresight.org/ - http://www.foresight.org/nano/index.html. March 12, 2014.

J. Ramsden, Essentials of Nanotechnology. Ramsden J & Ventus Publishing Aps (2009) ISBN 978-87-7681-418-2. Parte 1.1 página 10.

National Nanotechnology Initiative – Nano.gov. http://www.nano.gov/ -March 2014.

Y. Gou, J. Hua, Q. Wu, H. Wang. “Broadband Microstrip Antennas Using Complementary Metamaterials Structure”. 2011 Cross Strait Quad-

Regional Radio Science and Wireless Technology Conference.

C. Mijangos, J. Serafín Moya. Nuevos materiales en la sociedad del siglo XXI. CSIC (Consejo Superior de Investigaciones Científicas). Madrid,

ISBN 978-84-00-08453-0. Cap.5 Nanomateriales-“Clasificación de los Nanomateriales”. Albert Figueras y Jordi Pascual.

https://www.grafeno.com/que-es-el-grafeno. GRAFENO® El Material del Futuro. Página oficial de documentación y divulgación.

J. S. Moon, M. Antcliffe, H. C. Seo, S. C. Lin, A. Schmitz, I. Milosavljevic, K. McCalla, D. Wong, D. K. Gaskill, P. M. Campbell, K.-M. Lee, and P. Asbeck3. Graphene Transistors for RF Applications: Opportunities and Challenges. ISDRS 2011, December 7-9, 2011, College Park, MD, USA.

S. Demoustier, E. Minoux, M. Le Baillif, M. Charles, A. Ziaei. New concepts for nanophotonics and nano-electronics. Review of two microwave applications of carbon nanotubes: nano-antennas and nanoswitches. C. R. Physique 9 (2008) 53–66. 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. https://doi.org/10.1016/j.crhy.2008.01.001

J. Bernholc, D. Brenner, M. Buongiorno Nardelli, V. Meunier, C. Roland, Mechanical and electrical properties of nanotubes, Annu. Rev. Mater. Res. 32 (2002) 347-375.

Tie Jun CUI, IEEE Senior, Chang-Jiang Chair Professor, Southeast University, Nanjing, China. 978-1-4673-2999-6112©20 12 IEEE.

P.J. Burke, S. Li, Z. Yu, “Quantitative theory of nanowire and nanotube antenna performance”, IEEE T. Nanotechnology 5(4) (July 2006).

P.J. Burke, Z. Yu, C. Rutherglen, Carbon nanotubes for RF and microwaves, in: 13th GAAS® Symposium – Paris, 2005.

D. Kilinc, O. B. Akan, "Nanoscale Heat Communication," submitted for publication, 2013.

Dressler F. Biologically-inspired and Nano-scale Communication and Networking. Institute of Computer Science University of Innsbruck,

Austria. dressler@ieee.org. COLCOM 2013.

K. Jensen, J. Weldon, H. Garcia, and A. Zettl. Nanotube Radio. NANO LETTERS 2007. Vol. 7, No.11 3508-3511. Department of Physics, Center of Integrated Nanomechanical Systems, University of California at Berkeley, Berkeley, California 94720, and Materials Sciences DiVision, Lawrence Berkeley National Laboratory, Berkeley, California 94720. https://doi.org/10.1021/nl0721113 American Chemical Society.

Proffesor Ozgur Baris Akan of Department of Electrical and Electronics Engineering from Koc University. Istnabul, Turkey 34450.

akan@ku.edu.tr

B. Atakan, O. B. Akan, “Carbon Nanotube-based Nanoscale Ad Hoc Networks”, IEEE Communications Magazine, vol. 48, pp. 129-135, June 2010.https://doi.org/10.1109/MCOM.2010.5473874

C. Chen, S. Lee, V. V. Deshpande, G. Lee, M. Lekas, K. Shepard, J. Hone, “Graphene mechanical oscillators with tunable frequency”, Nature Nanotechnology, 17 November 2013. https://doi.org/10.1038/nnano.2013.232

Nguyen, C-C. MEMS technology for timing and frequency control, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 251-270 (2007).https://doi.org/10.1109/TUFFC.2007.240

Hajimiri, A. & Thomas, L. The Design of Low Noise Oscillators (Springer, 1999).

D. Malak, M. Kocaoglu, O. B. Akan, "AIGN Communication Channel with Molecular Diversity," submitted for publication, 2013.

G.W. Hanson, Fundamental transmitting properties of carbon nanotube antennas, IEEE T. Antennas Propagation 53 (11) (November 2005).

C. Chen, S. Lee, V. V. Deshpande, G. Lee, M. Lekas, Kenneth Shepard and James Hone. Graphene mechanical oscillators with tunable frequency.

Nature Nanotechnology. Letters: published online 17 november 2013| https://doi.org/10.1038/nnano.2013.232

Ultra-Miniature UHF Antenna using Magneto-dielectric Material. JF. Pintos, A. Louzir, P. Minard, J. Perraudeau, JL. Mattei, D. Souriou, P. Queffelec. 2010 14th International Symposium on Antenna Technology and Applied Electromagnetics [ANTEM] and the American Electromagnetics Conference [ANTEM].

OJS System - Metabiblioteca |