Modeling of desorption isotherms and isosteric heat of sorption in wet parchment coffee beans (Coffee arabica L.)

##plugins.themes.bootstrap3.article.main##

A. M. Ordoñez-Silva Universidad Surcolombiana
A. Campos-Cerquera Universidad Surcolombiana
Gentil Andrés Collazos-Escobar Universidad Surcolombiana
Nelson Gutiérrez Guzman Universidad Surcolombiana
Abstract

Drying is one of the essential operations to guarantee the stability and quality of parchment coffee beans. The objective of the present work was to model the desorption isotherms of the wet parchment coffee beans by means of a prototype of convective drying at laboratory scale and the estimation of the energy requirement of the process. The experimental data were modeled with three empirical expressions that link the dependence of equilibrium moisture content and water activity with temperature. The net isosteric heat of sorption was estimated by the Clausius-Clapeyron equation. The Iglesias and Chirife model satisfactorily modeled representing the effect of temperature on the isotherms of the wet parchment coffee beans; presented a determination coefficient higher than 0.97 and a root mean square error lower than 0.1 kg kg−1 dry basis, all of which indicate a good fit for practical purposes. The net isothermal heat of sorption decreased with increases in moisture content indicating the net energy expenditure of the drying process.

Keywords

Downloads

Download data is not yet available.

##plugins.themes.bootstrap3.article.details##

Author Biographies / See

A. M. Ordoñez-Silva, Universidad Surcolombiana

Estudiante de ingeniería agrícola

A. Campos-Cerquera, Universidad Surcolombiana

Estudiante de ingeniería agrícola

Gentil Andrés Collazos-Escobar, Universidad Surcolombiana

Ingeniero agrícola, auxiliar de investigación del Centro Surcolombiano de Investigación en Café CESURCAFÉ. 

Nelson Gutiérrez Guzman, Universidad Surcolombiana

Ph.D Tecnología de alimentos, docente planta Universidad Surcolombiana, director del Centro Surcolombiano de Investigación en Café CESURCAFÉ

References
Alves, E. G., Isquierdo, P. E., Borém, M. F., Siqueira, C. V., Oliveira, D. P., Andrade, T. E., 2013. Drying kinetics of natural coffee for different temperature and low relative humidity. Coffee Science, Lavras 8(2):238-247. Consultado el 2 de agosto de 2018.
https://www.researchgate.net/publication/289327720_Drying_kinetics_of_natural_coffee_for_different_temperatures_and_low_relative_humidity

Baptestini, M. F., Corrêa, P. C., Horta de Oliveira, Cecon, P. R., Ferreira, S. F., 2017. Kinetic modeling of water sorption by roasted and ground coffee. Acta Scientiarum Agronomy. Doi: 10.4025/actasciagron.v39i3.32576

Bastıoğlu, A. Z., Koç, M., Ertekin, F. G., 2017. Moisture sorption isotherm of microencapsulated extra virgin olive oil by spray drying. Food Measure. DOI 10.1007/s11694-017-9507-4

Bensebia, O., Allia, K., 2016. Analysis of adsorption- desorption moisture isotherms of rosemary leaves. Journal applied Research on Medicinal And Aromatics Plants. http://dx.doi.org/10.1016/j.jarmap.2016.01.005

Bon, J., Vaquiro, H. A., Mulet, A., 2012. Modeling sorption isotherms and isosteric heat of sorption of mango pulp cv. tommy atkins. Biotecnología en el Sector Agropecuario y Agroindustrial. Vol 10 No. 2 (34 - 43). Consultado el 10 de septiembre de 2017. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1692-35612012000200005

Bonner, I. J., Kenney, K. L., 2013. Moisture sorption characteristics and modeling of energy sorghum (Sorghum bicolor (L.) Moench. Journal of Stored Products Research. http://dx.doi.org/10.1016/j.jspr.2012.11.002

Brunauer, S., Deming, S. L., Deming, E. W., Teller, E., 1940. On a Theory of the van der Waals Adsorption of Gases. J. Am. Chem. Soc.. DOI: 10.1021/ja01864a025

Caballero-Cerón, C., Serment-Moreno, V., Velazquez, G., Torres, J. A. Welti-Chanes, J., 2017. Hygroscopic properties and glass transition of dehydrated mango, apple and banana. J Food Sci Technol. https://doi.org/10.1007/s13197-017-2963-3

Cano-Higuita, D. M., Villa-Vélez, H. A., Telis-Romero, J., Váquiro, H. A., Nicoletti, T. V. R., 2015. Influence of alternative drying aids on watersorption of spray dried mango mix powders:A thermodynamic approach. Food and Bioproducts Processing. http://dx.doi.org/10.1016/j.fbp.2013.10.005

Červenka,, L., Hloušková, L., Žabčíková, S., 2015. Moisture adsorption isotherms and thermodynamic properties of green and roasted Yerba mate (Ilex paraguariensis). Food Bioscience. https://doi.org/10.1016/j.fbio.2015.10.001

Corrêa, P. C., Reis, T. M. F., Horta de Oliveira, G. H., Rodrigues de Oliveira, A. P. L., Botelho, F. M., 2015. Moisture desorption isotherms of cucumber seeds: modeling and thermodynamic properties. Journal of Seed Science. http://dx.doi.org/10.1590/2317-1545v37n3149549

Corrêa, P.C, Botelho, M. F., Botelho, C. Silva de C., Goneli, D. L. A., 2014. Isotermas de sorção de água de frutos de Coffea canephora. Revista Brasileira de Engenharia Agrícola e Ambiental., Campina Grande, PB, UAEA/UFCG. DOI: http://dx.doi.org/10.1590/1807-1929/agriambi.v18n10p1047-1052

Corrêa, P.C, Goneli, L. A., Junior, A. Oliveira, H. G., Valente, D., 2010. Moisture sorption isotherms and isosteric heat of sorption of coffee in different processing levels. International Journal of Food Science and Technology. doi:10.1111/j.1365-2621.2010.02373.x

Domian, E., Brynda-Kopytowska, A., Ciesla, J., Górska, A., 2018. Effect of carbohydrate type on the DVS isotherminduced phase transitions in spray-dried fat-filled pea protein-based powders. Journal of Food Engineering. DOI: https://doi.org/10.1016/j.jfoodeng.2017.11.012

Ekechukwu, O. V., Norton, B., 1999. Review of solar-energy drying systems II: an overview of solar drying technology. Energy Conversion & Management. DOI: https://doi.org/10.1016/S0196-8904(98)00093-4

Ferreira de Souza, S. J., Váquiro, H. A., Villa-Vélez, H. A., Polachini, T. C., Telis-Romero, J., 2014. Physical, Thermal and Water-Sorption Properties of Passion Fruit Seeds. International Journal of Food Engineering. doi10.1515/ijfe-2014-0138

Ghosh, P., Venkatachalapathy, N., 2015. Changes in physico-chemical properties of coffee due to hot air assisted microwave drying. International Journal of Processing and Post-Harvest Technology. DOI:10.15740/HAS/IJPPHT/6.1/69-79

Goneli, A.L.D., Corrêa, P. C., Oliveira, G.H.H., Afonso Júnior, P.C., 2013. Water sorption properties of coffee fruits, pulped and green coffee. LWT - Food Science and Technology. DOI: http://dx.doi.org/10.1016/j.lwt.2012.09.006

Mireles-Arriaga, A. I., Ruiz-López, I. I., Hernández-García, P. A., Espinosa-Ayala, E., López-Martínez, L. X., Márquez-Molina, O., (2016). The impact of convective drying on the color, phenolic content and antioxidant capacity of noni (Morinda citrifolia L.). Food Science and Technology. DOI: http://dx.doi.org/10.1590/1678-457X.00415

Mousa, W., Mohamad, F., Jinap, S. G., Mohd, H., Radu, S., 2012. Sorption isotherms and isosteric heats of sorption of Malaysian paddy. J Food Sci Technol DOI 10.1007/s13197-012-0799-4

Noshad, M., Shahidi, F., Mohebbi, M., Mortazavi, S. A., 2012. Desorption isotherms and thermodynamic properties of fresh and osmotic–ultrasonic dehydrated quinces. Journal of Food Processing and Preservation ISSN 1745-4549. doi:10.1111/j.1745-4549.2011.00671.x

Patiño-Velasco, M. M., Pencue-Fierro, E. L., Vargas-Cañas, R., 2016. Determinación del contenido de humedad en granos de café pergamino seco utilizando speckle dinámico. Biotecnología en el Sector Agropecuario y Agroindustrial. DOI:10.18684/BSAA(14)84-91

Poltronieri, P., Rossi, F., 2016. Challenges in Specialty Coffee Processing and Quality Assurance. Journal Challenges. DOI: 10.3390/challe7020019

Resende, O., Arcanjo, V. R., Siqueira, C. V., Rodrigues, S., 2009. Modelagem matemática para a secagem de clones de café (Coffea canephora Pierre) em terreiro de concreto. Acta Scientiarum. Agronomy. DOI: 10.4025/actasciagron.v31i2.588

Shittu, T. A., Idowu-Adebayo, F., Adedokun, I. I., Alade, O., 2015. Water vapor adsorption characteristics of starch-albumen powder and rheological behavior of its paste. Nigerian Food Journal. DOI: http://dx.doi.org/10.1016/j.nifoj.2015.04.014

Tadapaneni, R. K., Yang, R., Carter, B., Tang, J., 2017. A new method to determine the water activity and the net isosteric heats of sorption for low moisture foods at elevated temperatures. Food Research International. http://dx.doi.org/10.1016/j.foodres.2017.09.070

Taoufik, F., Hadek, M., Hnini, M. C., Benchanaa, M´B., Hammioui, M., Hassani, I. L. M., 2017. Sorption isotherms and isosteric heats of sorption of mint variety (Mentha viridis) leaves and stems: Experimental and mathematical investigations. The European physical journal special topics. DOI: 10.1140/epjst/e2016-60180-1

Váquiro, H A., 2009. Contribución al estudio y optimización del secado intermitente: aplicación al secado de mango (Mangifera indica L var. Tommy Atkins). Thesis for: Doctor, Universidad Politécnica de Valencia, Departamento de Tecnología de Alimentos. Valencia, España Advisor: José Bon Corbín, Antonio Mulet Pons. DOI: 10.4995/Thesis/10251/6062

Villa-Velez, H. A., Váquiro, H. A., Bon, J., Telis-Romero, J., 2012. Modelling thermodynamic properties of Banana waste by analytical derivation of desorption isotherms. International Journal of Food Engineering. DOI: https://doi.org/10.1515/1556-3758.2191

Yang, Z., Zhu, E., Zhu, Z., 2015. Water desorption isotherm and drying characteristics of green soybean. Journal of Stored Products Research. https://doi.org/10.1016/j.jspr.2014.10.006

Zhang, L., Da-Wen, S., Zhang, Z., 2015. Methods for Measuring Water Activity (aw) of Foods and Its Applications to Moisture Sorption Isotherm Studies. Critical Reviews in Food Science and Nutrition. DOI: http://dx.doi.org/10.1080/10408398.2015.1108282
OJS System - Metabiblioteca |