Characterization and resizing of the water pumping system for aquaculture crops in El Rubí farm at Aipe-Huila

##plugins.themes.bootstrap3.article.main##

Abstract

Pumping systems allow the collection and transport of water for use. With the study of this field, energy expenditure in its operation was reduced. However, not all installations consider technical criteria, generating economic losses and service failures. The Huila’s Department is the national largest producer of tilapia, in floating cages or in inland ponds on riverbanks, requiring pumping systems. The Rubí farm at Aipe, cultivates 120 tons/year of tilapia niloticus, has 19 ponds supplied by the Bache river. This project achieved the characterization and resizing of the farm's pumping system. The percentage of water change, the flow and speed in the existing pipeline were determined and the optimal speed in suction and impulsion, the Reynolds in each section and the friction losses in pipe and accessories were calculated to determine the total load and NPSH available. It was found that the current system has rudimentary and obsolete facilities, and generates losses due to misalignment, poor condition of the skid, high vibrations and sediments that enter by suction. The current system delivers 12,405 m3/day with losses of 10.33 m of head. The resizing consisted of the redesign of pipes, selection of transformer, expansion joint, coupling, and filter, and the static and dynamic analysis of the skid, with analysis of resonance and natural frequency, and of the foundation, anchors and grouting, to finish with the implementation budget. With the new system, it is expected to reduce losses by 41.77%, reducing them to 6.02 m. The new system could decrease the operating time from 24 to 11 hours, implying a savings of 20,000 kWh/month (10,000,000 COP/month). 110,072,500 COP of implementation would return in 12 months.

Keywords

Downloads

Download data is not yet available.

##plugins.themes.bootstrap3.article.details##

Author Biographies / See

Luis Fernando Arias Ramos , Universidad Antonio Nariño

Ingeniero Mecánico

Fredy Olaya Idarraga, Universidad Antonio Nariño

Ingeniero Mecánico

Juan Gonzalo Ardila Marín, Universidad Antonio Nariño

Magíster en Gestión Energética Industrial – Instituto Tecnológico Metropolitano. Docente de la Universidad Antonio Nariño 

References

ABB, (2020). ABB Offers a Total Power Transmission Solution. Mechanical Power Transmission. Consultada 22/05/2020. https://new.abb.com/mechanical-power-transmission/dodge-couplings/dodge-elastomeric-couplings/raptor-couplings. https://doi.org/10.3403/02586324u

American Concrete Institute, (2004). ACI 351.3R-04 Foundations for Dynamic Equipment. ACI COMMITTEE REPORT. Consultada 22/05/2020. https://worldarchi.com/wp-content/uploads/2019/05/3513R_04.pdf

Arancibia, F. (2006). Grouting: Tipos, Características y Requisitos para su Colocación. Ingeniería y Construcción. Consultada 22/05/2020. https://facingyconst.blogspot.com/2006/05/groutingtiposcaracteristicas-y.html

ASME, (1998). Power Piping: ASME Code for Pressure Piping B31 an American National Standard. American Society of Mechanical Engineers. Consultada 25/04/2020. https://www.nrc.gov/docs/ML0314/ML031470592.pdf . https://doi.org/10.1115/b31

Barba Barba, K. J., & Sánchez Cevallos, D. D. (2015). Diseño de una Placa Base para una Bomba Centrífuga Tipo DVS J-14X25. Repositorio Escuela Politécnica Nacional. Consultada 22/05/2020. https://bibdigital.epn.edu.ec/bitstream/15000/11360/1/CD-6443.pdf

Brown, T.W., Tucker, C.S., & Rutland, B.L., (2016). Performance Evaluation of Four Different Methods for Circulating Water in Commercial-Scale Split-Pond Aquaculture Systems. Aquacultural Engineering. Vol. 70, pp. 33–41. https://doi.org/10.1016/j.aquaeng.2015.12.002

Colt, J., Plesha, P., & Huguenin, J., (2006). Impact of Net Positive Suction Head on the Design and Operation of Seawater Pumping Systems for Use in Aquaculture. Aquacultural Engineering. Vol. 35, pp. 239–257. https://doi.org/10.1016/j.aquaeng.2006.03.001

Copersa, (2018). Ficha Técnica. ODIS Prefiltro Autolimpiante Serie 18100. Repositorio Universidad Nacional Abierta y a Distancia UNAD. Consultada 22/05/2020. http://www.copersa.com/es/catalogo/odis-pre-filtros/pre-filtros-autolimpiantes-para-aspiraciones-serie-18100/_p:94/

DEACERO, (2020). Ficha Técnica Canales estructurales. Perfiles y Vigas Estructurales. Consultada 22/05/2020. https://www.deacero.com/canales-estructurales

Flexilatina, (2017). Juntas de Expansión en Caucho. Catálogo Técnico. Consultada 22/05/2020. https://flexilatina.com/wp-content/uploads/2017/09/Catalogo-juntas-de-caucho.pdf

Hidrostal, (2009). Manual del Usuario: Instalación, Operación y Mantenimiento. Bomba Centrífuga ISO 2858. Consultada 22/05/2020. https://www.abcingenieria.com/wp-content/uploads/2017/01/manual-bomba-centrifuga-2858.pdf

Izquierdo, M., & Carrillo, M., (1997). Optimization of Aquaculture Systems in Spain. Energy Conversion Managment. Vol. 38. No. 9. pp. 879-888. https://doi.org/10.1016/s0196-8904(96)00094-5

Korpale, V.S., Kokate, D.H., & Deshmukh, S.P., (2016). Performance Assessment of Solar Agricultural Water Pumping System. Energy Procedia. Vol. 90, pp. 518-524. https://doi.org/10.1016/j.egypro.2016.11.219

Malmedi, (2018). Bombas Hidromac. Fábrica de Bombas Malmedi. Consultada 25/04/2020. http://bombasmalmedi.com/p159/ETA-/-ETN/product_info.html

Ministerio de Fomento – España, (2019). Documento Básico SE-C Seguridad Estructural Cimientos. Consultada 22/05/2020. https://www.codigotecnico.org/pdf/Documentos/SE/DBSE-C.pdf

Mo, W.Y., Man, Y.B., & Wong, M.H., (2018). Use of Food Waste, Fish Waste and Food Processing Waste for China's Aquaculture Industry: Needs and Challenge. Science of the Total Environment Vol. 2018, pp. 635–643. https://doi.org/10.1016/j.scitotenv.2017.08.321

Mohana Rao, M.J., Kumar Sahu, M., & Kumar Subudhi, P., (2018). PV Based Water Pumping System for Agricultural Sector. Materials Today: Proceedings. Vol. 5, pp. 1008-1016. https://doi.org/10.1016/j.matpr.2017.11.177

Moses, D., & Colt, J., (2018). Impact of Fish Feed on Airlift Pumps in Aquaculture Systems. Aquacultural Engineering. Vol. 80, pp. 22–27. https://doi.org/10.1016/j.aquaeng.2017.12.001

Mott, R.L., (2006). Mecánica de Fluidos. Pearson Educación.626 pp.

Norton, R.L., (2011). Diseño de Máquinas. Pearson – Prentice Hall. 1048 pp.

Nuñez, O., (2013). Selección de Transformadores para Motores. Boletín Mensual Motortico. Consultada 25/04/2020. http://www.motortico.com/biblioteca/MotorTico/2013%20NOV%20-%20Seleccion%20de%20Transformadores%20para%20Motores%20Electricos.pdf

Rexnord. (2014). Elastomeric Coupling Catalog. Rexnord Company. Consultada 25/04/2020. https://www.rexnord.com/contentitems/techlibrary/documents/4000_catalog

Sánchez Ortiz, I. A., & Salazar Cano, R., (2007). Infraestructura hidráulica para acuicultura: un aporte en la compilación y adaptación del conocimiento ingenieril a la acuicultura. Revista Electrónica en Producción Acuícola, Vol. 2, pp. 246-297. Consultada 25/07/2019. https://revistas.udenar.edu.co/index.php/reipa/article/view/1669/2060. https://doi.org/10.15741/revbio.08suppl.e1181

WEG, (2017). W22 Motor Trifásico. Catálogo Comercial Mercado Latino-Americano. Consultada 22/05/2020. https://static.weg.net/medias/downloadcenter/h60/h24/WEG-w22-motor-trifasico-50044029-brochure-spanish-web.pdf

Yahyaoui, I., Tina, G., Chaabene, M., & Tadeo, F. (2015). Design and Evaluation of a Renewable Water Pumping System. IFAC-Papers On Line. Vol. 48, núm. 30, pp. 462–467. https://doi.org/10.1016/j.ifacol.2015.12.422

OJS System - Metabiblioteca |