Isotermas dinámicas de sorción de humedad y propiedades termodinámicas de café soluble

Moisture dynamic sorption isotherms and thermodynamic properties of soluble coffee

##plugins.themes.bootstrap3.article.main##

Diego Fernando Noguera Córdoba
Diana Marsela Rivero Barrios
Resumen

Estudiar el comportamiento de sorción de humedad y propiedades termodinámicas de alimentos deshidratados proporciona información importante para el diseño de procesos de secado y almacenamiento que aseguren la estabilidad de los productos. El propósito de este trabajo fue obtener las isotermas dinámicas de humedad, modelar su comportamiento y determinar las propiedades termodinámicas para café soluble. Las isotermas fueron obtenidas por el método dinámico de punto de roció (DDI) a 20, 25, 35 y 40 °C dentro de un rango de actividad de agua (aw) de 0.10-0.90.  Las isotermas de sorción de café soluble exhibieron un comportamiento tipo III. El mejor ajuste de los datos experimentales se obtuvo con la ecuación de Peleg en el rango de temperaturas y aw investigadas. El contenido de humedad aumento con el incremento de la temperatura en el rango de 0.25-0.65 aw. El contenido de humedad de la monocapa (MO), del modelo de Brunauer-Emmett-Teller (BET), disminuyó con el incremento de la temperatura, al igual que el área superficial del café soluble. Propiedades termodinámicas como calor isostérico neto de sorción, entalpia de sorción y energía libre de Gibbs de sorción se determinaron a partir de los datos de las isotermas encontradas. El calor isostérico neto de sorción y la entropía disminuyeron al aumentar el contenido de humedad. La energía libre de Gibbs de adsorción cambió de -4906 a -225 J mol-1 y se redujo con el incremento de la humedad.

Palabras clave

Descargas

Los datos de descargas todavía no están disponibles.

##plugins.themes.bootstrap3.article.details##

Biografía del autor/a / Ver

Diego Fernando Noguera Córdoba, Universidad de Antioquia

Ingeniería de Alimentos – Universidad de la Amazonia. Estudiante Nutrición y Dietética- Universidad de Antioquia

Diana Marsela Rivero Barrios, Corporación universitaria LaSallista

Diana Marsela Rivero Barrios, es Ingeniera de Alimentos, MSc en Innovación Alimentaria y Nutrición, Corporación Universitaria LaSallista de Medellin. Ha participado en la publicación de diferentes investigaciones del ámbito alimentario. Trabajó por más de 5 años en el Instituto de Ciencia y Tecnología Alimentaria-INTAL den la ciudad de Itagüí Antioquia. Con amplia experiencia en conservación y vida útil de alimentos.

Referencias

Al-Muhtaseb, A. H., McMinn, W. A. M., & Magee, T. R. A. (2002). Moisture Sorption Isotherm Characteristics of Food Products: A Review. Food and Bioproducts Processing, 80(2), 118–128. https://doi.org/10.1205/09603080252938753

Anandharamakrishnan, C. (2019). Spray-freeze-drying of coffee. In A. M. Grumezescu & A. Ma. Holban (Eds.), Caffeinated and Cocoa Based Beverages: Volume 8. The Science of Beverages (Vol. 10, pp. 337–366). Duxford: Elsevier Inc. https://doi.org/10.1016/B978-0-12-815864-7.00010-6

Arslan-Tontul, S. (2020a). Moisture sorption isotherm, isosteric heat and adsorption surface area of whole chia seeds. LWT - Food Science and Technology, 119(October 2019), 108859. https://doi.org/10.1016/j.lwt.2019.108859

Arslan-Tontul, S. (2020b). Moisture sorption isotherm and thermodynamic analysis of quinoa grains. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 57(3), 543–550. https://doi.org/10.1007/s00231-020-02978-8

Aviara, N. A. (2020). Moisture Sorption Isotherms and Isotherm Model Performance Evaluation for Food and Agricultural Products. In G. Kyzas & N. Lazaridis (Eds.), Sorption in 2020s (pp. 1–33). London, UK. https://doi.org/10.5772/intechopen.87996

Baptestini, F. M., Corrêa, P. C., de Oliveira, G. H. H., Cecon, P. R., & Soares, N. de F. F. (2017). Modelagem da cinética de sorção de água de café torrado e moído. Acta Scientiarum - Agronomy, 39(3), 273–281. https://doi.org/10.4025/actasciagron.v39i3.32576

Basu, S., Shivhare, U. S., & Mujumdar, A. S. (2006). Models for sorption isotherms for foods: A review. Drying Technology, 24(8), 917–930. https://doi.org/10.1080/07373930600775979

Burmester, K., Pietsch, A., & Eggers, R. (2011). A basic investigation on instant coffee production by vacuum belt drying. Procedia Food Science, 1, 1344–1352. https://doi.org/10.1016/j.profoo.2011.09.199

Carter, B. (2020). Applications for Dynamic Moisture Sorption Profiles in Foods. In G. Barbosa‐Cánovas, A. Fontana, S. Schmidt, & T. P. Labuza (Eds.), Water Activity in Foods: Fundamentals and Applications (Second, pp. 311–322). Chicago: John Wiley & Sons, Inc.

Carter, B., & Schmidt, S. (2012). Developments in glass transition determination in foods using moisture sorption isotherms. Food Chemistry, 132(4), 1693–1698. https://doi.org/10.1016/j.foodchem.2011.06.022

Carvalho Lago, C., & Noreña, C. P. Z. (2015). Thermodynamic analysis of sorption isotherms of dehydrated yacon (Smallanthus sonchifolius) bagasse. Food Bioscience, 12, 26–33. https://doi.org/10.1016/j.fbio.2015.07.001

Collazos-Escobar, G. A., Gutiérrez-Guzmán, N., Váquiro-Herrera, H. A., & Amorocho-Cruz, C. M. (2020). Water dynamics adsorption properties of dried and roasted cocoa beans (theobroma cacao L.). International Journal of Food Properties, 23(1), 434–444. https://doi.org/10.1080/10942912.2020.1732408

Collazos-Escobar, G, Gutiérrez-Guzmán, N., & Váquiro-Herrera, H. (2019). Modeling dynamic adsorption isotherms and thermodynamic properties of specialty ground roasted-coffee (Coffea arabica L.). Coffee Science, 14(1), 93–103. https://doi.org/10.25186/cs.v14i1.1532

Collazos-Escobar, Gentil, Gutiérrez-Guzmán, N., Vaquiro-Herrera, H. A., & Cortes-Macias, E. (2018). Modeling sorption isotherms and isosteric heat of sorption of roasted coffee beans. IDS’2018 – 21st International Drying Symposium, (September), 1–1. https://doi.org/10.4995/ids2018.2018.7668

Cunha, S. C., Senra, L., Cruz, R., Casal, S., & Fernandes, J. O. (2016). 4-Methylimidazole in soluble coffee and coffee substitutes. Food Control, 63, 15–20. https://doi.org/10.1016/j.foodcont.2015.11.006

Duarte Marques, R., Resende Oliveira, É., Silva Mendes Coutinho, G., Emannuele Chaves Ribeiro, A., Souza Teixeira, C., Soares Soares Júnior, M., & Caliari, M. (2020). Modeling sorption properties of maize by-products obtained using the Dynamic Dewpoint Isotherm (DDI) method. Food Bioscience, 38(August). https://doi.org/10.1016/j.fbio.2020.100738

Edrisi Sormoli, M., & Langrish, T. A. G. (2015). Moisture sorption isotherms and net isosteric heat of sorption for spray-dried pure orange juice powder. LWT - Food Science and Technology, 62(1), 875–882. https://doi.org/10.1016/j.lwt.2014.09.064

Gálvez, A. V., Aravena, E. L., & Mondaca, R. L. (2006). Isotermas de adsorción en harina de maíz (Zea mays L.). Ciência e Tecnologia de Alimentos, 26(4), 821–827. https://doi.org/10.1590/s0101-20612006000400017

Hayakawa, K.-I., Matas, J., & Hwang, M. P. (1978). Moisture Sorption Isotherms of Coffee Products. Journal of Food Science, 43(3), 1026–1027. https://doi.org/10.1111/j.1365-2621.1978.tb02479.x

Iaccheri, E., Laghi, L., Cevoli, C., Berardinelli, A., Ragni, L., Romani, S., & Rocculi, P. (2015). Different analytical approaches for the study of water features in green and roasted coffee beans. Journal of Food Engineering, 146, 28–35. https://doi.org/10.1016/j.jfoodeng.2014.08.016

ICO. (2020). International Coffee Organization. Exports of coffee by exporting countries. Retrieved October 20, 2020, from http://www.ico.org/prices/m1-exports.pdf

Kamau, E., Mutungi, C., Kinyuru, J., Imathiu, S., Tanga, C., Affognon, H., … Fiaboe, K. K. M. (2018). Moisture adsorption properties and shelf-life estimation of dried and pulverised edible house cricket Acheta domesticus (L.) and black soldier fly larvae Hermetia illucens (L.). Food Research International, 106(August 2017), 420–427. https://doi.org/10.1016/j.foodres.2018.01.012

Labuza, T., & Altunakar, B. (2020). Water Activity Prediction and Moisture Sorption Isotherms. In G. Barbosa‐Cánovas, A. Fontana, S. Schmidt, & T. P. Labuza (Eds.), Water Activity in Foods: Fundamentals and Applications (Second, pp. 161–206). Chicago: John Wiley & Sons, Inc.

Li, X., Cao, Z., Wei, Z., Feng, Q., & Wang, J. (2011). Equilibrium moisture content and sorption isosteric heats of five wheat varieties in China. Journal of Stored Products Research, 47(1), 39–47. https://doi.org/10.1016/j.jspr.2010.10.001

López-Vidaña, E. C., Castillo Téllez, M., Pilatowsky Figueroa, I., Santis Espinosa, L. F., & Castillo-Téllez, B. (2021). Moisture sorption isotherms, isosteric heat, and Gibbs free energy of stevia leaves. Journal of Food Processing and Preservation, 45(1). https://doi.org/10.1111/jfpp.15016

Mutlu, C., Candal-Uslu, C., Kılıç-Büyükkurt, Ö., & Erbaş, M. (2020). Sorption isotherms of coffee in different stages for producing Turkish coffee. Journal of Food Processing and Preservation, 44(5), 1–7. https://doi.org/10.1111/jfpp.14440

Mutlu, C., Koç, A., & Erbaş, M. (2020). Some physical properties and adsorption isotherms of vacuum-dried honey powder with different carrier materials. LWT - Food Science and Technology, 134(July). https://doi.org/10.1016/j.lwt.2020.110166

Muzaffar, K., & Kumar, P. (2016). Moisture sorption isotherms and storage study of spray dried tamarind pulp powder. Powder Technology, 291, 322–327. https://doi.org/10.1016/j.powtec.2015.12.046

Nurhadi, B., & Roos, Y. H. (2016). Dynamic water sorption for the study of amorphous content of vacuum-dried honey powder. Powder Technology, 301, 981–988. https://doi.org/10.1016/j.powtec.2016.07.055

Ordoñez-Silva, A. M., Campos-Cerquera, A. S., Collazos Escobar, A. G., & Guitierrez-Guzman, N. (2018). Modelado de las isotermas de desorción y calor isosterico de sorción en granos de café pergamino húmedo ( Coffee arabica L .). Revista Ingeniería y Región, 20, 14–22. https://doi.org/https://doi.org/10.25054/22161325.1909

Paes, M. S., Pessoa Filho, P. de A., & Tadini, C. C. (2021). Sorption properties of cambuci (Campomanesia phaea O. Berg) untreated and pre-treated with sorbitol as osmotic solute. LWT - Food Science and Technology, 139(November 2020). https://doi.org/10.1016/j.lwt.2020.110569

Penner, E. A., & Schmidt, S. J. (2013). Comparison between moisture sorption isotherms obtained using the new Vapor Sorption Analyzer and those obtained using the standard saturated salt slurry method. Journal of Food Measurement and Characterization, 7(4), 185–193. https://doi.org/10.1007/s11694-013-9154-3

Polatoǧlu, B., Beşe, A. V., Kaya, M., & Aktaş, N. (2011). Moisture adsorption isotherms and thermodynamics properties of sucuk (Turkish dry-fermented sausage). Food and Bioproducts Processing, 89(4), 449–456. https://doi.org/10.1016/j.fbp.2010.06.003

Quast, D. G., & Teixeira Neto, R. (1979). Moisture problems of foods in tropical climates. Food Technology, 30, 98.

Romani, S., Rocculi, P., Tappi, S., & Dalla Rosa, M. (2016). Moisture adsorption behaviour of biscuit during storage investigated by using a new Dynamic Dewpoint method. Food Chemistry, 195, 97–103. https://doi.org/10.1016/j.foodchem.2015.06.114

Sawhney, I. K., Sarkar, B. C., Patil, G. R., & Sharma, H. K. (2014). Moisture sorption isotherms and thermodynamic properties of whey protein concentrate powder from buffalo skim milk. Journal of Food Processing and Preservation, 38(4), 1787–1798. https://doi.org/10.1111/jfpp.12148

Schmidt, S. J., & Lee, J. W. (2012). Comparison between water vapor sorption isotherms obtained using the new dynamic dewpoint isotherm method and those obtained using the standard saturated salt slurry method. International Journal of Food Properties, 15(2), 236–248. https://doi.org/10.1080/10942911003778014

Sharma, P., Singh, R. R. B., Singh, A. K., Patel, A. A., & Patil, G. R. (2009). Sorption isotherms and thermodynamics of water sorption of ready-to-use Basundi mix. LWT - Food Science and Technology, 42(1), 441–445. https://doi.org/10.1016/j.lwt.2008.04.010

Toǧrul, H., & Arslan, N. (2007). Moisture sorption isotherms and thermodynamic properties of walnut kernels. Journal of Stored Products Research, 43(3), 252–264. https://doi.org/10.1016/j.jspr.2006.06.006

Vegro, C. L. R., & de Almeida, L. F. (2020). Global coffee market: Socio-economic and cultural dynamics. In L. F. de Almeida & E. E. Spers (Eds.), Coffee Consumption and Industry Strategies in Brazil (pp. 3–19). Duxford: Elsevier Inc. https://doi.org/10.1016/B978-0-12-814721-4.00001-9

Wani, S. A., & Kumar, P. (2016). Moisture sorption isotherms and evaluation of quality changes in extruded snacks during storage. LWT - Food Science and Technology, 74, 448–455. https://doi.org/10.1016/j.lwt.2016.08.005

Yao, K., Anthony, J., Maghirang, R., Hagstrum, D., Zhu, K., & Bhadriraju, S. (2020). Using dynamic dewpoint isotherms to determine the optimal storage conditions of inert dust-treated hard red winter wheat. Grain & Oil Science and Technology, 3(4), 127–137. https://doi.org/10.1016/j.gaost.2020.06.004

Yogendrarajah, P., Samapundo, S., Devlieghere, F., De Saeger, S., & De Meulenaer, B. (2015). Moisture sorption isotherms and thermodynamic properties of whole black peppercorns (Piper nigrum L.). LWT - Food Science and Technology, 64(1), 177–188. https://doi.org/10.1016/j.lwt.2015.05.045

Yuan, X., Carter, B. P., & Schmidt, S. J. (2011). Determining the Critical Relative Humidity at which the Glassy to Rubbery Transition Occurs in Polydextrose Using an Automatic Water Vapor Sorption Instrument. Journal of Food Science, 76(1). https://doi.org/10.1111/j.1750-3841.2010.01884.x

Zhang, L., Sun, D. W., & Zhang, Z. (2017). Methods for measuring water activity (aw) of foods and its applications to moisture sorption isotherm studies. Critical Reviews in Food Science and Nutrition, 57(5), 1052–1058. https://doi.org/10.1080/10408398.2015.1108282

Zungur Bastıoğlu, A., Koç, M., & Kaymak Ertekin, F. (2017). Moisture sorption isotherm of microencapsulated extra virgin olive oil by spray drying. Journal of Food Measurement and Characterization, 11(3), 1295–1305. https://doi.org/10.1007/s11694-017-9507-4

Sistema OJS - Metabiblioteca |