A systemic analysis proposal for the selection of soil remediation technologies based on a multi-criteria analysis
##plugins.themes.bootstrap3.article.main##
The remediation of contaminated sites in the oil and gas industry is a critical task for environmental protection and public health. The selection of appropriate remediation technologies is crucial to achieve effective and sustainable results. In this paper, we propose a systemic analysis approach for the selection of remediation technologies through a multi-criteria analysis (MCA) framework using the Analytic Hierarchy Process (AHP) developed by Saaty. The proposed method considers vari ous factors, including the nature of contaminants, site-specific conditions, environmental impact, cost-effectiveness, and societal acceptance. By integrating these criteria, decision-makers can make informed and comprehensive decisions regarding the most suitable remediation techniques for specific contaminated sites.
Downloads
##plugins.themes.bootstrap3.article.details##
Arroyo, M. E., & Rogel, J. M. Q. (2016). Aplicación de sistemas de biorremediación de suelos y aguas contaminadas por hidrocarburos. 9.
Befkadu, A. A., & Chen, Q. (2018). Surfactant-Enhanced Soil Washing for Removal of Petroleum Hydrocarbons from Contaminated Soils: A Review. Pedosphere, 419. https://doi.org/10.1016/S1002-0160(18)60027-X
Benavides, J., Quintero, MSc, G., Guevara Vizcaíno, A. L., Jaimes Cáceres, D. C., Gutiérrez Riaño, S. M., & Miranda García, J. (2006). Bioremediación de suelos contaminados con hidrocarburos derivados del petróleo. Nova, 4(5), 82. https://doi.org/10.22490/24629448.351
Bly, M. (2011). Deepwater Horizon Accident Investigation Report. DIANE Publishing.
Chen, X., Li, M., Liang, Z., Chen, C., Chao, Y., Qiu, R., & Wang, S. (2022). An AHP-based evaluation system applied for phytoremediation method selection in heavy metal contaminated farmland. Journal of Hazardous Materials Advances, 7, 100138. https://doi.org/10.1016/j.hazadv.2022.100138
Choi, S.-J., Kwon, T.-H., Im, H., Moon, D.-I., Baek, D. J., Seol, M.-L., Duarte, J. P., & Choi, Y.-K. (2011). A Polydimethylsiloxane (PDMS) Sponge for the Selective Absorption of Oil from Water. ACS Applied Materials & Interfaces, 3(12), 4552-4556. https://doi.org/10.1021/am201352w
Colorado, M. (2020). 10 años después del peor derrame de petróleo, el riesgo de otro accidente es aún mayor [Medio Ambiente]. France 24. https://www.france24.com/es/medio-ambiente/20200424-medio-ambiente-derrame-petroleo-bp
Dhaka, A., & Chattopadhyay, P. (2021). A review on physical remediation techniques for treatment of marine oil spills. Journal of Environmental Management, 288, 112428. https://doi.org/10.1016/j.jenvman.2021.112428
EIA. (2022). Energy Data and Statistics—US Energy Information Administration (EIA). U.S. Energy Facts Explained. https://www.eia.gov/energyexplained/us-energy-facts/data-and-statistics.php
Ecopetrol. (2018). Comportamiento histórico de incidentes derrames. Vicepresidencia SosTECnibilidad Ecopetrol.
Ekwuabu, C. B., Chikere, C. B., & Akaranta, O. . (2016). Effect of Different Nutrient Amendments on Eco-Restoration of a Crude Oil Polluted Soil. All Days, SPE-183608-MS. https://doi.org/10.2118/183608-MS
El Tiempo. (2018). En Colombia se han derramado 3,7 millones de barriles de crudo [Periodico Nacional]. El Tiempo. https://www.eltiempo.com/vida/medio-ambiente/cifras-de-derrames-de-crudo-en-colombia-en-los-ultimos-anos-207664
EPA. (1994a). How To Evaluate Alternative Cleanup Technologies For Underground Storage Tank Sites A Guide For Corrective Action Plan Reviewers. www.epa.gov/ust
EPA. (1994b). Remediation Technologies Screening Matrix and Reference Guide, Second Edition. U.S. Army Environmental. https://apps.dtic.mil/sti/pdfs/ADA439505.pdf
EPA. (2017). How To Evaluate Alternative Cleanup Technologies For Underground Storage Tank Sites. https://www.epa.gov/sites/default/files/2014-03/documents/tum_ch4.pdf
EPA. (2018). Engineering Issue: Soil Vapor Extraction (SVE) Technology. Office of Research and Development, 76. https://doi.org/EPA/600/R-18/053
EPA. (2020). Superfund Remedy Report (EPA-542-R-20-001 16th; Remedy Report, p. 85). Office of Land and Emergency Management. https://www.epa.gov/sites/default/files/2020-07/documents/100002509.pdf
ExxonMobil. (2022). Energy demand: Three drivers [Report]. ExxonMobil. https://corporate.exxonmobil.com:443/what-we-do/energy-supply/outlook-for-energy/energy-demand
Ferrera, R. C., Delgadillo, J. M., & Hernández, H. A. (2016). Compostaje en biopilas para la limpieza de suelos contaminados con hidrocarburos del petróleo. 9(8), pp: 24-30.
Filler, D. M., Snape, I., & Barnes, D. L. (2009). Bioremediation of Petroleum Hydrocarbons in Cold Regions. 20. https://doi.org/10.1017/CBO9780511535956
Forman, E. H., & Gass, S. I. (2001). The Analytic Hierarchy Process—An Exposition. Operations Research, 49(4), 469-486. https://doi.org/10.1287/opre.49.4.469.11231
Fundación Chile. (2015). Manual de Tecnologías de Remediación de Sitios Contaminados.
Germaine, K. J., Byrne, J., Liu, X., Keohane, J., Culhane, J., Lally, R. D., Kiwanuka, S., Ryan, D., & Dowling, D. N. (2015). Ecopiling: A combined phytoremediation and passive biopiling system for remediating hydrocarbon impacted soils at field scale. Frontiers in Plant Science, 5, 9. https://doi.org/10.3389/fpls.2014.00756
Gómez, J. S. S. (2021). Biorremediación por landfarming de suelos contaminados por hidrocarburos. [UNAD]. https://repository.unad.edu.co/bitstream/handle/10596/42658/jssierrago.pdf?sequence=1&isAllowed=y
Govindan, M., & Moon, I.-S. (2015). Uncovering results in electro-scrubbing process toward green methodology during environmental air pollutants removal. Process Safety and Environmental Protection, 93, 227-232. https://doi.org/10.1016/j.psep.2014.06.008
Hashim, D. P., Narayanan, N. T., & Romo-Herrera, J. M. (2012). Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions. Scientific Reports, 363. https://doi.org/10.1038/srep00363
Heravi, G., Fathi, M., & Faeghi, S. (2017). Multi-criteria group decision-making method for optimal selection of sustainable industrial building options focused on petrochemical projects. Journal of Cleaner Production, 142, 2999-3013. https://doi.org/10.1016/j.jclepro.2016.10.168
Hoang, S. A., Sarkar, B., Seshadri, B., Lamb, D., & Vinu, A. (2021). Mitigation of petroleum-hydrocarbon-contaminated hazardous soils using organic amendments: A review. Journal of Hazardous Materials, 416, 125702. https://doi.org/10.1016/j.jhazmat.2021.125702
Iturbe, R., Flores, C., Chávez, C., & Roldán, A. (2002). Saneamiento de suelos contaminados con amiento de suelos contaminados. Ingeniería Investigación y Tecnología, 3(1), 25-35. https://doi.org/10.22201/fi.25940732e.2002.03n1.004
Jaunich, M. K., Levis, J. W., Gaston, E. V., & Hauser, L. (2016). Characterization of municipal solid waste collection operations. Resources, Conservation and Recycling, 114, 92-102. https://doi.org/10.1016/j.resconrec.2016.07.012
Jiang, G., Hu, R., Xi, X., Wang, X., & Wang, R. (2013). Facile preparation of superhydrophobic and superoleophilic sponge for fast removal of oils from water surface. Journal of Materials Research, 28(4), 651-656. https://doi.org/10.1557/jmr.2012.410
Juwarkar, A. A., Singh, S. K., & Mudhoo, A. (2010). A comprehensive overview of elements in bioremediation. Reviews in Environmental Science and Bio/Technology, 9(3), 215-288. https://doi.org/10.1007/s11157-010-9215-6
Li, D.-C., Xu, W.-F., Mu, Y., Yu, H.-Q., Jiang, H., & Crittenden, J. C. (2018). Remediation of Petroleum-Contaminated Soil and Simultaneous Recovery of Oil by Fast Pyrolysis. Environmental Science & Technology, 52(9), 5330-5338. https://doi.org/10.1021/acs.est.7b03899
Li, P., Cai, Q., Lin, W., Chen, B., & Zhang, B. (2016). Offshore oil spill response practices and emerging challenges. Marine Pollution Bulletin, 110(1), 6-27. https://doi.org/10.1016/j.marpolbul.2016.06.020
Lukić, B., Panico, A., Huguenot, D., Fabbricino, M., van Hullebusch, E. D., & Esposito, G. (2017). A review on the efficiency of landfarming integrated with composting as a soil remediation treatment. Environmental Technology Reviews, 6(1), 94-116. https://doi.org/10.1080/21622515.2017.1310310
Michael-Igolima, U., Abbey, S. J., & Ifelebuegu, A. O. (2022). A systematic review on the effectiveness of remediation methods for oil contaminated soils. Environmental Advances, 9, 100319. https://doi.org/10.1016/j.envadv.2022.100319
Michel, J., & Fingas, M. (2016). Oil Spills: Causes, Consequences, Prevention, and Countermeasures. En G. M. Crawley, World Scientific Series in Current Energy Issues (Vol. 1, pp. 159-201). WORLD SCIENTIFIC. https://doi.org/10.1142/9789814699983_0007
Miller de Melo Henrique, J., Isidro, J., Sáez, C., López-Vizcaíno, R., Yustres, A., Navarro, V., Dos Santos, E. V., & Rodrigo, M. A. (2022). Enhancing soil vapor extraction with EKSF for the removal of HCHs. Chemosphere, 296, 134052. https://doi.org/10.1016/j.chemosphere.2022.134052
Montoya, J. I., Farid, C., Monroy, E., Reyes, J., Gutiérrez, C. A. G., Chaparro, J., Valdés, C., Garzón, L., Velasco, J., Tirado, D., Blanco, A., Moreno, N., & Marrugo, G. (2014). Pirólisis rápida de biomasa. Universidad Nacional de Colombia- Sede Medellín.
Mousset, E., Huguenot, D., van Hullebusch, E. D., Oturan, N., Guibaud, G., Esposito, G., & Oturan, M. A. (2016). Impact of electrochemical treatment of soil washing solution on PAH degradation efficiency and soil respirometry. Environmental Pollution, 211, 354-362. https://doi.org/10.1016/j.envpol.2016.01.021
Nhung, N. T. H., Nguyen, X.-T. T., Long, V. D., Wei, Y., & Fujita, T. (2022). A Review of Soil Contaminated with Dioxins and Biodegradation Technologies: Current Status and Future Prospects. Toxics, 10(6), 278. https://doi.org/10.3390/toxics10060278
Nikouei, M. A., Oroujzadeh, M., & Mehdipour-Ataei, S. (2017). The PROMETHEE multiple criteria decision making analysis for selecting the best membrane prepared from sulfonated poly(ether ketone)s and poly(ether sulfone)s for proton exchange membrane fuel cell. Energy, 119, 77-85. https://doi.org/10.1016/j.energy.2016.12.052
Ofoegbu, R. U., Yusuf O L Momoh, & Ify L Nwaogazie. (2015). Bioremediation of Crude Oil Contaminated Soil Using Organic and Inorganic Fertilizers. Journal of Petroleum & Environmental Biotechnology, 06(01), Article 01. https://doi.org/10.4172/2157-7463.1000198
Pando, M. M., Rosa, D., & Casabal, S. (2010). Planta de lavado de suelos: 21.
Ren, J., Song, X., & Ding, D. (2020). Sustainable remediation of diesel-contaminated soil by low temperature thermal treatment: Improved energy efficiency and soil reusability. Chemosphere, 241, 124952. https://doi.org/10.1016/j.chemosphere.2019.124952
Rodríguez, I. (2013). Reciclando en suelos de refinería: Nuevas aproximaciones para biodegradación de hidrocarburos mediante el manejo de enmiendas orgánicas.
Saadoun, I. M. K. (2015). Impact of Oil Spills on Marine Life. En Emerging Pollutants in the Environment—Current and Further Implications. IntechOpen. https://doi.org/10.5772/60455
Saaty, T. L. (1986). Axiomatic Foundation of the Analytic Hierarchy Process. Management Science, 32(7), 841-855.
Sarkar, D., Ferguson, M., Datta, R., & Birnbaum, S. (2005). Bioremediation of petroleum hydrocarbons in contaminated soils: Comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environmental Pollution, 136(1), 187-195. https://doi.org/10.1016/j.envpol.2004.09.025
Shapiro, A. F., & Koissi, M.-C. (2017). Fuzzy logic modifications of the Analytic Hierarchy Process. Insurance: Mathematics and Economics, 75, 189-202. https://doi.org/10.1016/j.insmatheco.2017.05.003
Sharmel, T., & Atencio, G. (2019). Remoción de plomo mediante la técnica de lavado por tres agentes extractantes de un suelo contaminado a escala de laboratorio. Universidad Nacional Agraria de la Selva.
Shi, J., Yang, Y., Lu, H., Xi, B., Li, J., Xiao, C., Wang, Y., & Tang, J. (2021). Effect of water-level fluctuation on the removal of benzene from soil by SVE. Chemosphere, 274, 129796. https://doi.org/10.1016/j.chemosphere.2021.129796
Suarez, R. (2013). Guía de métodos de biorremediación para la recuperación de suelos contaminados por hidrocarburos. Universidad Libre.
Thibodeau, J., & Désilets, M. (2018). Fact sheet: Low temperature thermal desorption—Ex situ. National Research Council. https://gost.tpsgc-pwgsc.gc.ca/tfs.aspx?ID=50&lang=eng&wbdisable=true
UPME. (2018). Evaluación de las cuencas y estructuración de escenarios de oferta de hidrocarburos convencionales y no convencionales (No. C-041 DE 2018; V.4, p. 393). Unidad de Planeación Minero-Energética.
Velásquez Arias, J. A. (2017). Contaminación de suelos y aguas por hidrocarburos en Colombia. Análisis de la fitorremediación como estrategia biotecnológica de recuperación. Revista de Investigación Agraria y Ambiental, 8(1), 151-167. https://doi.org/10.22490/21456453.1846
Vidali, M. (2001). Bioremediation. An overview. Pure and Applied Chemistry, 73(7), Article 7. https://doi.org/10.1351/pac200173071163
Vidonish, J. E., Zygourakis, K., Masiello, C. A., Sabadell, G., & Alvarez, P. J. J. (2016). Thermal Treatment of Hydrocarbon-Impacted Soils: A Review of Technology Innovation for Sustainable Remediation. Engineering, 2(4), 426-437. https://doi.org/10.1016/J.ENG.2016.04.005
Wang, C.-F., Tzeng, F.-S., Chen, H.-G., & Chang, C.-J. (2012). Ultraviolet-Durable Superhydrophobic Zinc Oxide-Coated Mesh Films for Surface and Underwater–Oil Capture and Transportation. Langmuir, 28(26), 10015-10019. https://doi.org/10.1021/la301839a
Yi, Y. M., Park, S., Munster, C., Kim, G., & Sung, K. (2016). Changes in Ecological Properties of Petroleum Oil-Contaminated Soil After Low-Temperature Thermal Desorption Treatment. Water, Air, & Soil Pollution, 227(4), 108. https://doi.org/10.1007/s11270-016-2804-4
Zhang, Z., Sèbe, G., Rentsch, D., Zimmermann, T., & Tingaut, P. (2014). Ultralightweight and Flexible Silylated Nanocellulose Sponges for the Selective Removal of Oil from Water. Chemistry of Materials, 26(8), 2659-2668. https://doi.org/10.1021/cm5004164