Development of a controller based on neural networks for a multivariable level and flow system

##plugins.themes.bootstrap3.article.main##

Faiber Ignacio Robayo B. Universidad Surcolombiana
Ana María Barrera F. Universidad Surcolombiana.
Laura Camila Polanco C. Universidad Surcolombiana.
Abstract
This paper presents the development of a neural control based on the inverse model for multivariable hydraulics system of level and flow of Surcolombiana University. The degree of coupling between the control variables is evaluated through the method of relative gain matrix. The system modeling is done and the drivers are implemented in MatLab using the Toolbox and Neural Network Simulink as interface monitoring and control. The control performance is evaluated through simulations and real-time testing. The comparison of performance between the neuronal control and the fuzzy control is done, evaluating three parameters: overshoot, steady-state error and settling time. The results show a better performance against the previously developed fuzzy controller for the same system. It is evident that the steady-state error decreases significantly as the percentage of maximum error is 0.01% and 0.003% by neural networks and 3% and 1.75% by fuzzy control for level and flow respectively. As to overshoot although the fuzzy control is minimal, the control neural networks remove it entirely. For the settling time it is observed that the neuronal control also improves considerably for the two variables
Keywords

Downloads

Download data is not yet available.

##plugins.themes.bootstrap3.article.details##

Author Biographies / See

Faiber Ignacio Robayo B., Universidad Surcolombiana

Magíster en Ingeniería de Control Industrial.

Ana María Barrera F., Universidad Surcolombiana.

Ingeniero Electrónico.

Laura Camila Polanco C., Universidad Surcolombiana.

Ingeniero Electrónico.
References

Aliasghary, M., Naderi, A., Ghasemzadeh, H., Pourazar, A. 2011. Design of Radial Basis Function Neural Networks, Controller Based on Sliding Suface for a Coupled Tank System. Engineering Istanbul Technical University. Turkey.

Armijos, L., Chicaiza, D., 2011. Diseño e implementación de controladores inteligentes en el control de nivel de un sistema multi-tanque. Escuela Politécnica del Ejército. Sangolquí, Ecuador.

Bristol, E. H., 1996. On a New Measure of Interaction for Multivariable Process Control. IEEE Transaction on automatic control, pp. 133-134.

Castelo, G., Garrido, J., Vázquez, F., 2009. Ajuste, configuración y control de cuatro tanques acoplados. Universidad de Córdoba.

Dreyfus, G., 2005. Neural Networks: Methodology and Applications. Springer (Ed), p. 498.

Garrido, J., Reina, P., Vázquez, M., García, A., 2009. Control de Nivel a través de Redes Neuronales. Universidad Tecnológica del Sureste de Veracruz.

Goméz, L., Sossa, H., Barrón, R., Cuevas, F., Jimenez, J. 2013. Redes Neuronales Dinámicas a la Recomendación musical optimizada, pp. 47-10.

Llano, L., Hoyos, A., Arias, F., Velásquez, J., 2007. Comparación del Desempeño de Funciones de Activación en Redes Feedforward para aproximar Funciones de Datos con y sin Ruido. Universidad Nacional de Colombia, sede Pereira. Vol. 4, Núm. 2.

Majstotovic, M., Nikolic, I., Radovic, J., Kvascev, G., 2008. Neural network control approach for a twotank system. 9th Symposium on Neural Network Applications in Electrical Engineering, NEUREL-2008. Belgrade, Serbia.

Moromenacho, E., Rosero, C., Bravo, Y., 2010. Control Predictivo en tanques acoplados. Escuela Politécnica Nacional. Quito, Ecuador.

Osorio, C., 2015. Extracción de Modelos Dinámicos Directamente de Datos Experimentales usando Identificación de Sistemas. Mathworks. Disponible en web <http://www.mathworks.com/videos/extractingdynamic-models-from-experimental-data-usingsystem-identification-spanish-100499.html >

Parker, D. B., 1995. Optimal algorithms for adaptive networks: Second order backpropagation, second order direct propagation and second order Hebbian learning. En: D.B. Parker IEEE 1st Int. Conf. on Neural Networks, San Diego, CA. vol.2, pp. 593- 600.

Ponce, Cruz P., 2010. Inteligencia Artificial con Aplicaciones a la Ingeniería. Alfaomega (Ed). 376 págs.

Ramírez, G., Calvache, O., 2013. Diseño e Implementación de un Controlador Multivariable de Nivel y Flujo Utilizando Microcontroladores Especiales para Lógica Difusa. Neiva, Colombia.

Ramli, M., Ahmad, R., Ismail, R., 2009. Comparison of Swarm Adaptive Neural Network Control of a Coupled Tank Liquid Level System. International Conference on Computer Technology and Development. Malaysia.

Recalde, L., Burbano, P., 2006. Control Adaptativo Multivariable en línea. Escuela Nacional Politécnica. Quito, Ecuador.

Rocha, C., Escorcia, J., 2010. Sistema de Visión Artificial para la Detección y el Reconocimiento de Señales de Tráfico Basado en Redes Neuronales. 8th LACCEI Latin American and Caribbean Conference for Engineering and Technology (LACCER’2010).

Smith, C. y Corripio, A., 1997. Principles and Practice of Automatic Process Control, John Wiley & Sons, New York.

Torres, L., Anzurez, J., 2013. Adaptive Neuro-Fuzzy Inference System Control for a Two Tanks Hydraulic System Model. Power, Electronics and Computing (ROPEC), 2013 IEEE International Autumn Meeting on Automatic Contrand Systems Engineering. University of Sheffield. United Kingdom.

Vassiljeva, K., Belikov, J., Petlenkov, E., 2014. Application of genetic algorithms to neural networks based control of a liquid level tank system. International Joint Conference on Neural Networks (IJCNN). Beijing, China.

Zarza, E. 2012. Desarrollo de Redes Neuronales Artificiales para el Cálculo del Transporte Neoclásico en Reactores de Fusión. Madrid-España.

OJS System - Metabiblioteca |