Study of denitrifícation process in SBR reactor fed with the effluent of an anaerobic submerged membrane bioreactor SAnMBR

##plugins.themes.bootstrap3.article.main##

Javier E. Sánchez Ramírez Universidad de Valencia
Alberto Bouzas Universidad de Valencia
Aurora Seco Universidad de Valencia
Maria Francisca García Usach Universidad Politécnica de Valencia
Abstract
The treatment or after-treatment of anaerobic effluent suggests study of various processes that allow the elimination or removal of contaminants. The objective of this work consisted in the study of the ability of denitrifícation under anoxic conditions using different givers of electrons, available in the SAnMBR such as reactor effluent: volatile fatty acids, dissolved methane and sulfur. The importance of this study lies in the possibility of using volatile fatty acids, methane and sulfide dissolved as givers of electrons, for the Elimination of nitrogen. The dissolved methane is a source of very cheap carbón and an effective greenhouse gas, requiring their removal. The SAnMBR reactor effluent contains significant concentrations of ammonium, phosphorus, sulfur, acetic acid and elements dissolved methane and trace. During the operation of the reactor SBR (Sequencing Bacth Reactor) the concentration of nitrate in each cycle remained constant, around 50 mg N03-N l'1 The percentage of denitrifícation retrieved was higher than 60%. The microbiological study, using the FISH technique, showed the presence of bacteria metanotroficas (type I and II), sulfatoreductoras bacteria and denitrifying bacteria in the reactor.
Keywords

Downloads

Download data is not yet available.

##plugins.themes.bootstrap3.article.details##

Author Biographies / See

Javier E. Sánchez Ramírez, Universidad de Valencia

MSc. Estudiante doctorado Dpto. Ingeniería Química. U. de Valencia (España).

Alberto Bouzas, Universidad de Valencia

PhD profesor Dpto. Ingeniería Química. U. de Valencia (España).

Aurora Seco, Universidad de Valencia

PhD profesor Dpto. Ingeniería Química. U. de Valencia (España).

Maria Francisca García Usach, Universidad Politécnica de Valencia

PhD Profesor Dpto. Ing. Hidráulicay Medio Ambiente. U. Politécnica de Valencia (España).
References

Acevedo, B., Oehmen, A., Carvalho, G., Seco, A., Borrás, L., and Barat, R. (2012). Metabolic shift of polyphosphate-accumulating organisms with different levels of polyphosphate storage. Water research, 46(6), 1889-1900.

Aguado, D., Ribes, J., Montoya, T., Ferrer, J., and Seco, A(2009). Amethodology for sequencing batch reactor identification with artificial neural networks: a case study. Computers & Chemical Engineering, 33(2), 465-472.

Amann, R.I.,(1995). Fluorescently labelled, rRNAtargeted oligonucleotide probes in the study of microbial ecology. Molecular Ecology. 4 (5), 543 - 554.

Amaral, J.A., Archambault C., Richards, S.R., Knowles, R., (1995). Denitrification associated with groups I and II methanotrophs in a gradient enrichment system. FEMS Microbiol. Ecol. 18, 289-298

APHA/AWWA, (2005). Standard Methods for the Examination of Water and Wastewater, 21 th ed. American Public Health Association, American Water Works Association and Water Environment F ederation, Washington DC, USA.

Costa, C., Dijkema, C., Friedrich, M., García-Encina, P., Fernandez - Polanco, F., Stams, A.J.M., (2000). Denitrification with methane as electrón donor in oxygen limited bioreactors. Appl. Microbiol. Biotechnol. 53,754-762.

Daims, H., Bruhl, A., Ammán,R., Schleifer,K.H., Wagner, M. (1999). The domain specific probe EUB 338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22,434-444.

Eller, G., Stubner, S., Frenzel, P., (2001). Group specific 16S rRNAtargeted probes for the detection of type I and type II methanotrophs by fluorescence in situ hybridization. FEMS Microbiol. Lett. 198,91 -97.

Hatamoto, M., Miyauchi, T., Kindaichi, T., Ozaki, N., Ohashi, A , (2011).Dissolved methane oxidation and competition for oxygen in down-flow hanging sponge reactor for post-treatment of anaerobic wastewater treatment, Bioresource Technology. 08,99.

Moosbrugger, R. E., Wentzel, M. C., Ekama, G. A., Marais, G. v. R., (1992). Simple titrationprocedures to determine H2C03* alkalinity and short-chain fatty acids in aqueous solutions containing known concentrations of ammonium, phosphate and sulphide weak acid/bases. Water Research Commission, Report No. TT 57/92. University of Cape Town, Research Report W 74, Pretoria, Republic of South Africa.

Modin, O., Kensuke, F., Kazuo, Y., (2007). Denitrification whit methane as extemal carbón source. Water research 41,2726 - 2738.

Islas-lima, S., Thalasso, F., Gómez-Hemandez, J., (2004). Evidence of anoxic methane oxidation coupledto denitrification. Water Research. 38,13-16.

Rabus, R., Wilkes, H., Schramm, A., Harms, G., Behrends, A., Amann, R., Widdel, F.,(1999). Anaerobic degradation of alkylbenzenes and nalkanes from crude oil in an enrichment culture of denitrifying bacteria affiliating with the ?-subclass of Proteobacteria. Environmentaí Microbiology (2), 145-157.

Souza, C.L., Chemicharo, C.A.L., Aquino, S.F.,(2010). Quantification of dissolved methane inUASB reactor treating domestic wastewater under different operating conditions. IWA world congress on anaerobic digestión. Guadalajara.

Strous, M., (2010). Global consequences of anaerobic methane oxidation. Handbook of Hydrocarbon an lipid Microbiology. 3078 - 3083.

Thalasso, F., Vallecillo, A., García - Encina, P., Fernandez- Polanco, F.,(1997). The use of methane as a solé carbón source for wastewater denitrification. Water Res. 31(1), 55

OJS System - Metabiblioteca |