Identifícaction of Donwnhole Dynamometer Charts Using Neural Networks as a Tool for Help in Mechanical Pumping

##plugins.themes.bootstrap3.article.main##

José Salgado Universidad Surcolombiana-Neiva.
Hugo Bernal TecnoParque Nodo Neiva-SENA.
Alexander Zambrano Restech-Opical constructores
Fauricio Romero Ecopetrol. S.A
Leonardo Franco Universidad Surcolombiana-Neiva.
Carlos Pérez Universidad Surcolombiana-Neiva
Abstract
Successful identification of downhole problems is essential in mechanical pumping to achieve optimum production and to minimize operating and maintenance costs. It is necessary to develop and apply methodologies that allow fast identification of problems which affect production. The mechanical condition and performance of the downhole equipment (rod string, pump, valves, etc.) and physical properties of well like pump submergence, gas interference, pump leaks, etc, may be evaluated using dynamometer charts. In this work a fault analysis and operation conditions methodology for pumping system is presented; this includes the development of analysis software based on neural networks to identify system problems using downhole dynamometer charts. The developed system allowed to identify a set of the most common problems with a high precision and is a tool that could assist engineers and operations personnel in day to day oilfield works in rod pumping. Additionally, a basic functionality was developed to identify nearest charts according to statistical and geometric features, which can be used as the starting point to develop a smart system to predict potential faults in the future.
Keywords

Downloads

Download data is not yet available.

##plugins.themes.bootstrap3.article.details##

Author Biographies / See

José Salgado, Universidad Surcolombiana-Neiva.

Ingeniero Electrónico. Msc Docente 

Hugo Bernal, TecnoParque Nodo Neiva-SENA.

Ingeniero Electrónico. Asesor 

Alexander Zambrano, Restech-Opical constructores

Ingeniero Eléctrico. Ph.D. Restech-Opical  constructores.Venezuela.

Fauricio Romero, Ecopetrol. S.A

Ingeniero de Petroleas. Profesional en producción. 

Leonardo Franco, Universidad Surcolombiana-Neiva.

Ingeniero Electrónico.

 

Carlos Pérez, Universidad Surcolombiana-Neiva

IngenierodePetróleos. Docente 

References

Acosta, M. l. Zuluaga, C.A. 2000. Tutorial sobre redes neuronales aplicadas en ingeniería eléctrica y su implementación en un sitio web. Pereira. Tesis de grado. Universidad Tecnológica de Pereira. Ingeniería eléctrica.81 p.

Beale,M. Demuth,H.Hagan, M.TheMatworks, 2010. Neuronal Network Toolbox.User's Guide. 162 p.

Heaton,J. 2008. Introduction toNeuralNetworks forC#, 2nd Edition. Heaton Research.

Orozco, M. 2005. Selección efectiva de características wavelet en la identificación de bioseñales 1-Dy 2- D usando algoritmos genéticos. Manizales. Tesis de grado. Universidad Nacional de Colombia. Ingeniería eléctrica, electrónicaycomputación.

Russel,J.H.Jr. 1995. Interpretation of Dynamometer Cards.Houston. GulfOil Corporation.

Svinos,J.G. 1998.Manual de bombeo mecánico avanzado. Theta Enterprise, Inc. 16p.

Tackas, G. 1993.SuckerRod Pumping Manual. Tulsa-USA.

OJS System - Metabiblioteca |