Effect of the representative coordinate of the aggregation on apparent electrical conductivity data and its relationship with measures of spatial dependence
##plugins.themes.bootstrap3.article.main##
Estimating soil resources at a different scale on which observations are made is a major problem that continues to generate related research. An increase in scale means an increase in the variation of the parameter, and this can cause problems when interacting with non-linearity in a process or model. Changing the spatial resolution by adding or disaggregating data carries the risk of conflicting results. To demonstrate this fact, Apparent Electrical Conductivity data were taken with the EM38-MK2 sensor in a vertical position to the ground simultaneously with the two dipoles at two relative depths (0.75m and 1.5m), associated with the same coordinate. Spatial aggregation sizes were evaluated from a fishnet of 5m´5m to 70m´70m, with an arithmetic ratio of 5m. Representative coordinates were used to generate the matrix of spatial weights based on the: i) center of the grid, ii) mean value of the coordinates that spatially intercept each cell, and iii) value of the centroid of the points added by each cell. To analyze the spatial autocorrelation pattern, the Moran Montecarlo index was used for the residuals of the adjusted model. The results showed that as the size of the grid is increased, the univariate spatial dependence begins to decrease for all representative coordinates, with the coordinate of the center of the cell being the most affected. For a specific sensor depth, the use of the centroid coordinate and in aggregations that exceed 20m is recommended to maintain the spatial dependency structure that could be natural in this variable and convenient in spatial regression modeling processes.
Downloads
##plugins.themes.bootstrap3.article.details##
Abdi, H. (2009). Centroids. Wiley Interdisciplinary Reviews: Computational Statistics, 1(2), 259-260. https://doi.org/10.1002/wics.31
Akaike, H. (1998). Information theory and an extension of the maximum likelihood principle. In Selected papers of hirotugu akaike (pp. 199-213). Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1694-0_15
Arbia, G. (2014). A primer for spatial econometrics with applications in R. Palgrave Macmillan. https://doi.org/10.1057/9781137317940
Bivand, R., Altman, M., Anselin, L., Assunção, R., Berke, O., Bernat, A., & Blanchet, G. (2015). Package ‘spdep’. See ftp://garr.tucows.com/mirrors/CRAN/web/packages/spdep/spdep.pdf (accessed 9 December 2015).
Corwin, D. L., & Lesch, S. M. (2005). Apparent soil electrical conductivity measurements in agriculture. Computers and electronics in agriculture, 46(1-3), 11-43. https://doi.org/10.1016/j.compag.2004.10.005
Deakin, R. E., Bird, S. C., & Grenfell, R. I. (2002). The Centroid? Where would you like it to be be?. Cartography, 31(2), 153-167. https://doi.org/10.1080/00690805.2002.9714213
Ehret, U., Zehe, E., Wulfmeyer, V., Warrach-Sagi, K., & Liebert, J. (2012). HESS Opinions" Should we apply bias correction to global and regional climate model data?". Hydrology & Earth System Sciences Discussions, 9(4). https://doi.org/10.5194/hess-16-3391-2012
Elhorst, J. P. (2014). Spatial econometrics: from cross-sectional data to spatial panels (Vol. 479, p. 480). Heidelberg: Springer. DOI:10.1007/978-3-642-40340-8
ESRI. (2017). ArcGIS Desktop: Release 10.5.1; Environmental Systems Research Institute: Redlands, CA, USA.
Eteje, S. O., & Oluyori, P. D. (2020). Impact of different centroid means on the accuracy of orthometric height modelling by geometric geoid method. International Journal of Scientific Reports, 6(4), 124-130. https://doi.org/10.18203/issn.2454-2156.IntJSciRep20201267
Folberth, C., Skalský, R., Moltchanova, E., Balkovič, J., Azevedo, L. B., Obersteiner, M., & Van Der Velde, M. (2016). Uncertainty in soil data can outweigh climate impact signals in global crop yield simulations. Nature communications, 7(1), 1-13. https://doi.org/10.1038/ncomms11872
Fu, W., Zhao, K., Zhang, C., & Tunney, H. (2011). Using Moran's I and geostatistics to identify spatial patterns of soil nutrients in two different long‐term phosphorus‐application plots. Journal of Plant Nutrition and Soil Science, 174(5), 785-798. https://doi.org/10.1002/jpln.201000422
GEONICS EM38K2. 2012. Ground conductivity meter operating manual. Geonics Limited. Leaders in electromagnetics. Mississaagua (Ontario). 57p.
Grosz, B., Dechow, R., Gebbert, S., Hoffmann, H., Zhao, G., Constantin, J., ... & Eckersten, H. (2017). The implication of input data aggregation on up-scaling soil organic carbon changes. Environmental modelling & software, 96, 361-377. https://doi.org/10.1016/j.envsoft.2017.06.046
Guo, W., Maas, S. J., & Bronson, K. F. (2012). Relationship between cotton yield and soil electrical conductivity, topography, and Landsat imagery. Precision Agriculture, 13(6), 678-692. https://doi.org/10.1007/s11119-012-9277-2
Hamner, B., Frasco, M., & LeDell, E. (2018). Package ‘Metrics’.
Hoffmann, H., Zhao, G., Asseng, S., Bindi, M., Biernath, C., Constantin, J., ... & Gaiser, T. (2016). Impact of spatial soil and climate input data aggregation on regional yield simulations. PLoS One, 11(4), e0151782. https://doi.org/10.1371/journal.pone.0151782
Li, H., Calder, C. A., & Cressie, N. (2007). Beyond Moran's I: testing for spatial dependence based on the spatial autoregressive model. Geographical Analysis, 39(4), 357-375. https://doi.org/10.1111/j.1538-4632.2007.00708.x
Longley, P. A., Goodchild, M. F., Maguire, D. J., & Rhind, D. W. (2015). Geographic information science and systems. John Wiley & Sons. ISBN: 978-1-118-67695-0
Mitra, R., & Sharma, S. (2018). Proactive data routing using controlled mobility of a mobile sink in wireless sensor networks. Computers & Electrical Engineering, 70, 21-36. https://doi.org/10.1016/j.compeleceng.2018.06.001
Moran, P. A. (1948). The interpretation of statistical maps. Journal of the Royal Statistical Society. Series B (Methodological), 10(2), 243-251. DOI: 10.2307/2983777
Ord, K. (1975). Estimation methods for models of spatial interaction. Journal of the American Statistical Association, 70(349), 120-126. http://dx.doi.org/10.1080/01621459.1975.10480272
Rao, S., Meunier, F., Ehosioke, S., Lesparre, N., Kemna, A., Nguyen, F., ... & Javaux, M. (2019). Impact of Maize Roots on Soil–Root Electrical Conductivity: A Simulation Study. Vadose Zone Journal, 18(1), 190037. https://doi.org/10.2136/vzj2019.04.0037
Silva Filho, A., Silva, J. R., Silva, C. B., Souza, L. A., Calixto, W., & Brito, L. (2019, June). Analysis of plant root system influence on electrical properties of the soil. In 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe) (pp. 1-5). IEEE. https://doi.org /10.1109/EEEIC.2019.8783367
Spearman, C. (1910). Correlation calculated from faulty data. British journal of psychology, 3(3), 271. https://doi.org/10.1111/j.2044-8295.1910.tb00206.x
Sudduth, K. A., Drummond, S. T., & Kitchen, N. R. (2001). Accuracy issues in electromagnetic induction sensing of soil electrical conductivity for precision agriculture. Computers and electronics in agriculture, 31(3), 239-264. https://doi.org/10.1016/S0168-1699(00)00185-X
Terrón, J. M., Da Silva, J. M., Moral, F. J., & García-Ferrer, A. (2011). Soil apparent electrical conductivity and geographically weighted regression for mapping soil. Precision Agriculture, 12(5), 750-761. https://doi.org/10.1007/s11119-011-9218-5
Western, A. W., & Blöschl, G. (1999). On the spatial scaling of soil moisture. Journal of hydrology, 217(3-4), 203-224. https://doi.org/10.1016/S0022-1694(98)00232-7
Zhao, G., Hoffmann, H., van Bussel, L. G., Enders, A., Specka, X., Sosa, C., ... & Teixeira, E. (2015). Effect of weather data aggregation on regional crop simulation for different crops, production conditions, and response variables. Climate Research, 65, 141-157. https://doi.org/10.3354/cr01301