Effects of rainfall variability on coffee phenology: case Xalapa-Coatepec coffee zone, Ver. Mex.

Efectos de la variabilidad de la precipitación en la fenología del café: caso zona cafetalera Xalapa-Coatepec, Veracruz, Mex.

##plugins.themes.bootstrap3.article.main##

Paulo César Parada Molina
Juan Cervantes Pérez
Victoria Estefanía Ruiz Molina
Carlos Roberto Cerdán Cabrera
Abstract

    The availability of water is a priority factor for agriculture. The precipitation is the main water source for perennial crops such as coffee; however, the change in the distribution of precipitation, due to climatic variability, could affect its development, since coffee cultivation has been shown to be sensitive to changes in weather patterns. Therefore, the objective of this research was to identify the effect of precipitation variability on coffee phenology (Coffea arabica) from a case study in the Xalapa-Coatepec coffee zone, Veracruz (Mexico). A plot of shade coffee (var. Garnica with trees Acrocarpus fraxinifolius) was delimited (19.51998° N, 96.94339° W; 1320 m asl). Weekly observations were made of 30 coffee plants (one plagiotrophic branch) to determine the start and duration of the phenological phases. Microclimatic variables were measured with an automatic weather station (Davis Vantage). An automated rain gauge (HOBO Onset) was installed 30 m from the experimental plot, in an open site. The monitoring was carried out during two production periods (May 2017 to May 2019). The phenological variables were related to rainfall conditions. The evaluated period was influenced by the phenomena of La Niña (productive period 2017-2018) and El Niño (productive period 2018-2019), presenting rainfall above and below the annual average, respectively. The growth and filling and maturation phases, of the 2018-2019 production period, were more extensive perhaps due to the low availability of water caused by midsummer drought (July) and pre-summer drought (January-February). The monitoring of the rainfall conditions and their variability will allow planning and implementing strategies to reduce the effects of dry periods.


 

Keywords

Downloads

Download data is not yet available.

##plugins.themes.bootstrap3.article.details##

Author Biographies / See

Paulo César Parada Molina, Universidad Veracruzana

Maestro en Gestión Ambiental. Universidad Veracruzana, Circuito Aguirre Beltrán s/n, Xalapa, Veracruz (México

Juan Cervantes Pérez, Universidad Veracruzana

Doctor en Geografía, Universidad Veracruzana. Circuito Aguirre Beltrán s/n, Xalapa, Veracruz, Veracruz (México)

Victoria Estefanía Ruiz Molina, Universidad Veracruzana

Ingeniero Agrícola Universidad Nacional de Colombia, Estudiante de Master en Ciencias de la Ecología y Biotecnología de la Universidad Veracruzana, Circuito Presidentes Campus para las artes y las culturas, Xalapa, Veracruz (México).

 

Carlos Roberto Cerdán Cabrera, Universidad Veracruzana

PhD en Agroforestería, Universidad Veracruzana, Circuito Aguirre Beltrán s/n, Xalapa, Veracruz (México).

 

References

Allou-Allou, A., Trejo-García, J.C., Martínez-García, M.Á., 2018. Opción climática para la producción de café en México. Ensayos Revista de Economía, 37(2), 135–154. https://doi.org/10.29105/ensayos37.2-1

Arcila P.J., 2007. Crecimiento y desarrollo de la planta de café. Sistemas de producción de café en Colombia. Colombia: CENICAFE. Consultado el 25 de agosto del 2020. https://cenicafe.org/es/documents/LibroSistemasProduccionCapitulo2.pdf. https://doi.org/10.38141/10778/1121

Bacon, C.M., Sundstrom,W.A., Stewart, I.T., Beezer, D., 2017. Vulnerability to cumulative hazards: coping with the coffee leaf rust outbreak, drought, and food insecurity in Nicaragua. World Development, 93, 136-152. https://doi.org/10.1016/j.worlddev.2016.12.025

Barva H., 2011. Guía Técnica para el Cultivo del Café. San José: AGRIS, Instituto del Café de Costa Rica (ICAFE). Consultado el 25 de agosto del 2020. http://www.icafe.cr/wp-content/uploads/cicafe/documentos/GUIA-TECNICA-V10.pdf. https://doi.org/10.2307/j.ctvc5pd2j.6

Camargo, M.B., 2010. The impact of climate variability and climate change on arabic coffee crop in Brazil. Bragantia, 69(1), 239-247. https://doi.org/10.1590/s0006-87052010000100030

Chengappa, P.G., Devika, C.M., Rudragouda, C.S., 2017. Climate variability and mitigation: perceptions and strategies adopted by traditional coffee growers in India. Climate and Development, 9(7), 593-604. https://doi.org/10.1080/17565529.2017.1318740

Christman, Z., Rogan, J., Eastman, J.R., Turner, B.L., 2016. Distinguishing land change from natural variability and uncertainty in central Mexico with MODIS EVI, TRMM precipitation, and MODIS LST data. Remote Sensing, 8(6), 478. https://doi.org/10.3390/rs8060478

Conde, C., Vinocur, M., Gay-García, C., Seiler, R., Estrada, F., 2013. Climatic threat spaces in Mexico and Argentina. Climate change and vulnerability and adaptation. Leary N., Conde c., Kulkarni J., Nyong A., Adejuwon J., Barros V., Burton I., Lasco R y Pulhin J Ed., Reino Unido, 279-306. https://doi.org/10.4324/9781849770811

Craparo, A.C., Van-Asten, P., Läderach, P., Jassogne, L.T., Grab, S.W., 2015. Coffea arabica yields decline in Tanzania due to climate change: Global implications. Agricultural and Forest Meteorology, 207, 1–10. https://doi.org/10.1016/j.agrformet.2015.03.005

De Beurs, K.M., Henebry, G.M., 2005. Land surface phenology and temperature variation in the International Geosphere-Biosphere Program high-latitude transects. Global Change Biology, 11(5), 779-790. https://doi.org/10.1111/j.1365-2486.2005.00949.x

Magaña, R.V., Vázquez, J.L., Pérez, J.L., Pérez, J.B., 2003. Impact of El Niño on precipitation in México. Geofísica Internacional, 42(3), 313–330.

Nelson, G., Valin, H., Sands, R., Havlík, P., Ahammad, H., Deryng, D., Elliott, J., Fujimori, S., Hasegawa, T., Heyhoe, E., Kyle, P., Von Lampe, M., Lotze-Campen, H., Mason, D., Van Meijl, H., Van Der Mensbrugghe, D., Müller, C., Popp, A., Robertson, R., Robinson, S., Schmid, E., Schmitz, C., Tabeau, A., Willenbockel, D., 2014. Climate change effects on agriculture: economic responses to biophysical shocks. Proceedings of the National Academy of Sciences, 111(9), 3274-3279. https://doi.org/10.1073/pnas.1222465110

NOAA [National Oceanic and Atmospheric Administration], 2008. Earth System Research Laboratory: El Niño/Southern Oscillation (ENSO). Consultado el 21 de agosto de 2020.http://www.cdc.noaa.gov/enso/

Pedrosa-Correo, I., Juarros-Basterretxea, J., Robles-Fernández, A., Basteiro-Correo, J., García-Cueto, E., 2015. Pruebas de bondad de ajuste en distribuciones simétricas, ¿qué estadístico utilizar? Universitas Psychologica, 14(1), 15–24. https://doi.org/10.11144/Javeriana.upsy

Pezzopane, J.R., Júnior, P., José, M., Camargo, M.B., Fazuoli, L.C., 2008. Exigência térmica do café arábica cv. Mundo Novo no subperíodo florescimento-colheita. Ciencia e Agrotecnologia, 32(6), 1781-1786. https://doi.org/10.1007/s00484-011-0486-6

Pezzopane, J.R., Salva, T., Lima, V., Fazuoli, L.C., 2012. Agrometeorological parameters for prediction of the maturation period of Arabica coffee cultivars. International journal of Biometeorology, 56(5), 843-851.

Pham, Y., Reardon-Smith, K. Cockfield, G., 2019. The impact of climate change and variability on the Coffee Production: a systematic review. Climate Change. 24(2), 173-188. https://doi.org/10.1007/s10584-019-02538-y

Ponnette-González, A.G., Weathers, K.C., & Curran, L.M., 2010. Water inputs across a tropical montane landscape in Veracruz, Mexico: synergistic effects of land cover, rain and fog seasonality, and interannual precipitation variability. Global Change Biology, 16(3), 946-963. https://doi.org/10.1111/j.1365-2486.2009.01985.x

Ramírez, V., Jaramillo, A., Arcila, J., 2010. Índices para evaluar el estado hídrico en los cafetales. Cenicafé, 61(1), 55-66.

Ramírez, V., Arcila, J., Jaramillo, R.Á., Rendón, S.J., Cuesta, G.G., García, L.J., Menza, F.H., Mejía, M.C., Montoya, D.F., Mejía, M.J., Torres, N.J., Sánchez, A.P., Baute, B.J., Peña, Q.A., 2011. Variabilidad climática y la floración del café en Colombia. Colombia: CENICAFE. Consultado el 25 de septiembre del 2020. https://biblioteca.cenicafe.org/bitstream/10778/333/1/avt0407.pdf. https://doi.org/10.38141/10778/1121

Rivera-Silva, M.D.R., Gavrilov, I.N., Castillo-Álvarez, M., Ordaz-Chaparro, V. M., Díaz-Padilla, G., Guajardo-Panes, R.A., 2013. Vulnerability of Coffee Production (Coffea arabica L.) to Global Climate Change. Terra Latinoamericana, 31(4), 305–313.

Ruelas-Monjardín, L.C., Nava-Tablada, M.E., Cervantes, P.J., Barradas, M.V., 2014. Importancia ambiental de los agroecosistemas cafetaleros bajo sombra en la zona central montañosa del estado de Veracruz, México. Madera y Bosques, 20(3), 27–40. https://doi.org/10.21829/myb.2014.203149

Ruíz-Barradas A., Tejeda-Martínez A., Miranda-Alonso S., Flores-Zamudio R.H., 2010. Climatología. Atlas del patrimonio natural, histórico y cultural de Veracruz. Benítez-Badillo, G. y Welsh C Ed., México, 65-84.

Salazar, B.M., Gunda, D.M., Lagrimas, A.J., Santos, P.J., Del Rosario, E.E., 2017. Characterization of reproductive phenology of four coffee (Coffea spp.) species in the Philippines using the BBCH scale. Philippine Journal of Crop Science (Philippines), 44(3):10-19.

Sarvina, Y., June, T., Surmaini, E., Nurmalina, R., Hadi, S., 2020. Strategi Peningkatan Produktivitas Kopi serta Adaptasi terhadap Variabilitas dan Perubahan Iklim melalui Kalender Budidaya. Jurnal Sumberdaya Lahan, 14(2), 65-78. https://doi.org/10.21082/jsdl.v14n2.2020.65-78

Seager, R., Ting, M., Davis, M., Cane, M., Naik, N., Nakamura, J., Li, C., Cook, E., Stahle, D., 2009. Mexican drought: an observational modeling and tree ring study of variability and climate change. Atmósfera, 22(1), 1–13.

Servicio Meteorológico Nacional (SMN), 2020. Normales climatológicas. Consultado el de agosto del 2020. http://smn.cna.gob.mx/es/informacion-climatologica-ver-estado?estado=ver

Tejeda-Martínez, A., Torres-Alavez J.A., Ruiz-Barradas A., Miranda A.S., Salazar L.S., 2011. Evaluations and perceptions of the climate change in the State of Veracruz: an overview: Climate change: socioeconomic effects. Blanco J. y Kherandmand H. Ed., Croacia, 131-155. https://doi.org/10.5772/23398

Torres-Alavez J.A., Tejeda M.A., Vázquez A.J., Brunet I.M., Hernández A.P., Ruiz B.A., 2010. Índices de cambio climático y análisis de variabilidad en el estado de Veracruz, México: Ciudad, clima y ecosistemas. Fernández-García F., Galán-Gallego E. y R. Cañada-Torrecilla Ed., España, 295-304.

Villers, L., Arizpe, N., Orellana, R., Conde, C., Hernández, J., 2009. Impactos del cambio climático en la floración y desarrollo del fruto del café en Veracruz, México. Interciencia, 34(5), 322–329. https://doi.org/10.4060/ca7134es

Williams, A.P., Funk, C., 2011. A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa. Climate Dynamics, 37(11-12), 2417-2435. https://doi.org/10.1007/s00382-010-0984-y

Zarazúa, V.P., Ruiz, C.J., Ramírez, O.G., Medina, G.G., Rodríguez, M.V., De la Mora, O.C., Flores, L.H., Durán, P.N., 2014. Índices de extremos térmicos en las Llanuras Costeras del Golfo Sur en México. Revista Mexicana de Ciencias Agrícolas, (10), 1843-1857. https://doi.org/10.29312/remexca.v0i10.1021

OJS System - Metabiblioteca |